px4的无人机飞控应用开发大学论文.doc

px4的无人机飞控应用开发大学论文.doc

ID:10822943

大小:153.51 KB

页数:81页

时间:2018-07-08

px4的无人机飞控应用开发大学论文.doc_第1页
px4的无人机飞控应用开发大学论文.doc_第2页
px4的无人机飞控应用开发大学论文.doc_第3页
px4的无人机飞控应用开发大学论文.doc_第4页
px4的无人机飞控应用开发大学论文.doc_第5页
资源描述:

《px4的无人机飞控应用开发大学论文.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PX4/PixHawk无人机飞控应用开发1、PX4/Pixhawk飞控软件架构简介PX4是目前最流行的开源飞控板之一。PX4的软件系统实际上就是一个firmware,其核心OS为NuttX实时ARM系统。其固件同时附带了一系列工具集、系统驱动/模块与外围软件接口层,所有这些软件(包括用户自定义的飞控软件)随OS内核一起,统一编译为固件形式,然后上传到飞控板中,从而实现对飞控板的软件配置。PX4配套的软件架构主要分为4层。理解其软件架构是开发用户自定义飞控应用软件的基础。a)API层:这个好理解。b)框架层:包含了操作基础飞行控制的默认程序集(节

2、点)c)系统库:包含了所有的系统库和基本交通控制的函数d)OS内核:提供硬件驱动程序、网络、UAVCAN和故障安全系统上述是个面向PX4系统实现者的相对具体的软件架构。实际上还有另外一种面向PX4自定义飞控应用开发者的高层软件架构描述,相对抽象,但更简单,就是整个PX4的软件从整体上分为2层:a)PX4flightstack:一系列自治无人机自动控制算法的集合b)PX4Middleware:一系列针对无人机控制器、传感器等物理设备的驱动及底层通信、调度等机制的集合PX4软件架构中,最有意思的一点在于整个架构的抽象性(多态性)。即,为了最大限度保

3、障飞控算法代码的重用性,其将飞控逻辑与具体的底层控制器指令实现进行了解耦合。一套高层飞控算法(如autopilot、GeoFence等)在不做显著修改的情况下,能够适用于固定翼、直升机、多旋翼等多种机型的控制场合,这时候就体现出PX4飞控的威力来了:在用户程序写好之后,如果需要替换无人机机架的话,仅需简单的修改一下机架配置参数即可,高层的用户自定义飞控应用几乎无需修改。理解上述初衷至关重要。有很多搞自动化出身、没太多软件经验的朋友倾向于直接使用底层控制协议来控制飞控板,但实际上PX4架构已经在更高的抽象层面上提供了更好的选择,无论是代码维护成本

4、、开发效率、硬件兼容性都能显著高于前者。很多支持前者方式的开发者的理由主要在于高层封装机制效率较低,而飞控板性能不够,容易给飞控板造成较大的处理负载,但实际从个人感觉上来看,遵循PX4的软件架构模式反倒更容易实现较高处理性能,不容易产生控制拥塞,提升无人机侧系统的并发处理效率。2、PX4/Pixhawk飞行控制协议与逻辑Mavlink是目前最常见的无人机飞控协议之一。PX4对Mavlink协议提供了良好的原生支持。该协议既可以用于地面站(GCS)对无人机(UAV)的控制,也可用于UAV对GCS的信息反馈。其飞控场景一般是这样的:a)手工飞控:G

5、CS->(MavLink)->UAVb)信息采集:GCS<-(Mavlink)<-UAVc)自治飞控:UserApp->(MavLink)->UAV也就是说,如果你想实现地面站控制飞行,那么由你的地面站使用Mavlink协议,通过射频信道(或wifietc.)给无人机发送控制指令就可以了。如果你想实现无人机自主飞行,那么就由你自己写的应用(运行在无人机系统上)使用Mavlink协议给无人机发送本地的控制指令就可以了。然而,为实现飞控架构的灵活性,避免对底层实现细节的依赖,在PX4中,并不鼓励开发者在自定义飞控程序中直接使用Mavlink,而是鼓

6、励开发者使用一种名为uORB((MicroObjectRequestBroker,微对象请求代理)的消息机制。其实uORB在概念上等同于posix里面的命名管道(namedpipe),它本质上是一种进程间通信机制。由于PX4实际使用的是NuttX实时ARM系统,因此uORB实际上相当于是多个进程(驱动级模块)打开同一个设备文件,多个进程(驱动级模块)通过此文件节点进行数据交互和共享。在uORB机制中,交换的消息被称之为topic,一个topic仅包含一种message类型(即数据结构)。每个进程(或驱动模块)均可“订阅”或“发布”多个topic

7、,一个topic可以存在多个发布者,而且一个订阅者可也订阅多个topic。而正因为有了uORB机制的存在,上述飞控场景变成了:a)手工飞控:GCS->(MavLink)->(uORBtopic)->UAVb)信息采集:GCS<-(Mavlink)<-(uORBtopic)<-UAVc)自治飞控:UserApp->(uORBtopic)->(MavLink)->UAV有了以上背景基础,便可以自写飞控逻辑了,仅需在PX4源码中,添加一个自定义module,然后使用uORB订阅相关信息(如传感器消息等),并发布相关控制信息(如飞行模式控制消息等)即可

8、。具体的uORBAPI、uORB消息定义可参考PX4文档与源码,所有控制命令都在firmware代码的msg里面,不再敷述。最后值得一提的是,在PX4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。