全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题及答案)

ID:20450997

大小:77.40 KB

页数:7页

时间:2018-10-12

全等三角形的性质及判定(习题及答案)_第1页
全等三角形的性质及判定(习题及答案)_第2页
全等三角形的性质及判定(习题及答案)_第3页
全等三角形的性质及判定(习题及答案)_第4页
全等三角形的性质及判定(习题及答案)_第5页
资源描述:

《全等三角形的性质及判定(习题及答案)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、全等三角形的性质及判定(习题)Ø例题示范例1:已知:如图,C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【思路分析】①读题标注:②梳理思路:要证全等,需要三组条件,其中必须有一组边相等.由已知得,CD=BE;根据条件C为AB中点,得AC=CB;这样已经有两组条件都是边,接下来看第三边或已知两边的夹角.由条件CD∥BE,得∠ACD=∠B.发现两边及其夹角相等,因此由SAS可证两三角形全等.【过程书写】先准备不能直接用的两组条件,再书写全等模块.过程书写中需要注意字母对应.证明:如图∵

2、C为AB中点∴AC=CB∵CD∥BE∴∠ACD=∠B在△ACD和△CBE中∴△ACD≌△CBE(SAS)Ø巩固练习1.如图,△ABC≌△AED,有以下结论:①AC=AE;②∠DAB=∠EAB;③ED=BC;④∠EAB=∠DAC.其中正确的有()A.1个B.2个C.3个D.4个第1题图第2题图1.如图,B,C,F,E在同一直线上,∠1=∠2,BF=EC,要使△ABC≌△DEF,还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____

3、________,理由是_____________;这个条件还可以是_____________,理由是_____________.2.如图,D是线段AB的中点,∠C=∠E,∠B=∠A,找出图中的一对全等三角形是_______________,理由是_________.第3题图第4题图3.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是__

4、___________;这个条件还可以是_____________,理由是_____________.4.如图,将两根钢条,的中点连在一起,使,可以绕着中点O自由旋转,这样就做成了一个测量工具,的长等于内槽宽AB.其中判定△OAB≌△的理由是()A.SASB.ASAC.SSSD.AAS第5题图第6题图1.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED

5、的长就是AB的长.判定△EDC≌△ABC最恰当的理由是()A.SASB.ASAC.SSSD.AAA2.已知:如图,M是AB的中点,∠1=∠2,∠C=∠D.求证:△AMC≌△BMD.【思路分析】①读题标注:②梳理思路:要证全等,需要______组条件,其中必须有一组_____相等.由已知得:_______=_______,_______=_______.根据条件_________________,得_______=_______.因此,由________可证两三角形全等.【过程书写】证明:如图3.已知

6、:如图,点B,F,C,E在同一条直线上,且BC=EF,AB∥DE,AB=DE.求证:△ABC≌△DEF.【思路分析】①读题标注:①梳理思路:要证全等,需要_____组条件,其中必须有一组____相等.由已知得:_______=_______,_______=_______.根据条件_________________,得_______=_______.因此,由__________可证两三角形全等.【过程书写】证明:如图Ø思考小结1.两个三角形全等的判定有_____,_____,_____,_____,

7、其中AAA,SSA不能证明三角形全等,请举反例进行说明.1.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.你能说明其中的道理吗?【参考答案】Ø巩固练习1.B2.AC=DF,SAS;∠B=∠E,ASA;∠A=∠D,AAS3.△BCD≌△AED,AAS4.AC=AE,S

8、AS;∠B=∠D,ASA;∠C=∠E,AAS5.A6.B7.①略②3,边∠1,∠2;∠C,∠DM是AB的中点,AM,BMAAS【过程书写】证明:如图,∵M是AB的中点∴AM=BM在△AMC和△BMD中∴△AMC≌△BMD(AAS)1.①略②3,边BC,EF,AB,DEAB∥DE,∠B,∠ESAS【过程书写】证明:如图,∵AB∥DE∴∠B=∠E在△ABC和△DEF中∴△ABC≌△DEF(SAS)Ø思考小结1.SAS,SSS,ASA,AASAAA反例:大小三角板SSA反例

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。