二氧化锰纳米材料

二氧化锰纳米材料

ID:29790268

大小:29.22 KB

页数:24页

时间:2018-12-23

二氧化锰纳米材料_第1页
二氧化锰纳米材料_第2页
二氧化锰纳米材料_第3页
二氧化锰纳米材料_第4页
二氧化锰纳米材料_第5页
资源描述:

《二氧化锰纳米材料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划二氧化锰纳米材料  第1章绪论  超级电容器简介  超级电容器,也称电化学电容器,其性能介于电池和电容器之间。近年来,电化学电容器因其高输出功率性能和循环寿命长,在电化学能量储存和转换领域得到了极大的关注。作为一种主电源的可移动辅助能源设备,和电池或燃料电池一样,电化学电容器在短时间功率增强方面效果很好。电化学电容器的电容材料电荷储存机制包括发生在电极和电解质界面处的电荷分离以及快速发生在电极上的法拉第反应。由于电荷分离而产生的电容,通常被称为双电层电容。

2、因法拉第过程产生的电容器称为赝电容器。因为这些类型的电容器电容量比传统的电容器大很多倍,所以又被成为超级电容器。。由于电荷分离而产生的电容,通常被称为双电层电容器。因法拉第过程产生的电容称为法拉第准电容器。因为这些类型的电容器电容量比传统的电容器大很多倍,所以称为超级电容器。  超级电容与传统电池、电容器比较目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  传统电池因为其功率密

3、度值很难达到500kW/kg、充电时间长、充放电效率低、循环寿命短等缺点限制了它的发展,而静电电容器因为比电容太小而限制了其应用。超级电容器则填补了电池和静电电容器之间的空白,它独特的性质使短时间大功率充放电储能机制成为可能。  表电池、静电电容器和超级电容器性能  充电时间  放电时间  能量密度Wh/kg  功率密度Wh/kg  循环效率  循环寿命  电池1~5h~3h20~10050~200~500~XX超级电容器1~30s1~30s1~~XX~>静电电容器10-6~10-310-5~10-无限  通过图,可以看出超级电容器具有另两种储能器件无法比拟的优点。

4、  充放电速度快,超级电容器是通过双电层充放电或者在电极活性材料表面发生的快速可逆的法拉第反应来进行充放电,这个过程几十秒就可以完成。  功率密度高,这也是超级电容器最重要的一个优点。功率密度是现今电池的发展的一个瓶颈,因为功率密度不高从而使电池无法在较大型设备上使用,比如汽车等。而超级电容器可以在短时间内达到很高的功率输出,使其可以与蓄电池组成复合电源,延长蓄电池的寿命。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定

5、安保从业人员的业务技能及个人素质的培训计划  能量密度高,这点可以在能量密度需求高的地方取代静电电容器。  循环寿命长,由于超级电容器充放电的两种机制都有很好的可逆性,不会像蓄电池那样因为充放电产生活性物质晶型变化、脱落等问题,循环寿命相对要长得多。  对环境友好,相对于蓄电池其充电效率高,而且对环境无污染,研究方向趋向于降低成本,可以成为绿色电源。  超级电容器的分类及工作原理  超级电容器根据储能机制不同可分为双电层电容器和法拉第准电容器。前者通过电极/电解液之间的电荷分离产生电容,后者是金属氧化物表面和体相中发生氧化还原反应而产生吸附电容。还有一种包含前两者的

6、电容器成为混合电容,这里不做介绍。  (1)双电层电容器目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  双电层电容器的性质是有Helmholz在1987年研究发现的。我们知道,当一个电解质溶液通电时,由于电位差的产生,会使电解质中的阳离子向阴极移动,阴离子向阳极移动,同样金属极板与电解质溶液之间还有符号相反的过剩电荷。如果我们将两个极板通电后插入到电解液中,施加电压小于电解质

7、溶液的分解电压,则这个电解体系不会因此发生电化学反应,但由于电场的存在,阴阳离子迅速向两极移动,从而在两极板上形成紧密排列的电荷层,相对电解液也会形成紧密排列的电荷层,即为双电层。这种电容效应类似于平板电容器,但是因为电荷层间距很小,所以可以容纳比普通电容器更大的电量。  严格来说,产生的双电层是离子双电层、吸附双电层和偶极双电层共同作用的结果。双电层产生的首要条件是电极之间施加的电压不能使电解液产生电化学反应,另外电解质溶液中也要有有能构成电荷层的离子存在。  双电层电容器每个单元包括两个电极,电解液,和隔膜,隔膜在电极中间,其间充斥的电解液,相当于两个电容器

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。