欢迎来到天天文库
浏览记录
ID:33565311
大小:1.06 MB
页数:22页
时间:2019-02-27
《圆锥曲线的解题方法技巧归纳》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实用标准文案圆锥曲线解题方法技巧归纳第一、知识储备:1.直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。(2)与直线相关的重要内容①倾斜角与斜率②点到直线的距离③夹角公式:(3)弦长公式直线上两点间的距离:或(4)两条直线的位置关系①=-1②2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:距离式方程:参数方程:(2)、双曲线的方程的形式有两种精彩文档实用标准文案标准方程:距离式方程:(3)、三种圆锥曲线的通径你记得吗?(4)、圆锥曲线的定义你记清楚了吗?如:已知是椭圆的两个焦点,平面内一个动点M满足则动点M的轨迹是()A、双
2、曲线;B、双曲线的一支;C、两条射线;D、一条射线(5)、焦点三角形面积公式:(其中)(6)、记住焦半径公式:(1),可简记为“左加右减,上加下减”。(2)(3)(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)设、,为椭圆的弦中点则有精彩文档实用标准文案,;两式相减得=2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式,以及根与系数的关系,代入弦长公式,设曲线上的两点,将这两点代入曲线方程得到两个式子,然后-,整体消元····
3、··,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为,就意味着k存在。例1、已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;(2)若角A为,AD垂直BC于D,试求点D的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC的斜率,从而写出直线BC的方程。第二问抓住角A为可得出AB⊥AC,从而得,然后利用联立消元法及交轨法求出点D的轨
4、迹方程;解:(1)设B(,),C(,),BC中点为(),F(2,0)则有精彩文档实用标准文案两式作差有(1)F(2,0)为三角形重心,所以由,得,由得,代入(1)得直线BC的方程为2)由AB⊥AC得(2)设直线BC方程为,得,代入(2)式得,解得或直线过定点(0,,设D(x,y),则,即所以所求点D的轨迹方程是。3、设而不求法例2、如图,已知梯形ABCD中,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点当时,求双曲线离心率的取值范围。精彩文档实用标准文案分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。
5、建立直角坐标系,如图,若设C,代入,求得,进而求得再代入,建立目标函数,整理,此运算量可见是难上加难.我们对可采取设而不求的解题策略,建立目标函数,整理,化繁为简.解法一:如图,以AB为垂直平分线为轴,直线AB为轴,建立直角坐标系,则CD⊥轴因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于轴对称依题意,记A,C,E,其中为双曲线的半焦距,是梯形的高,由定比分点坐标公式得,设双曲线的方程为,则离心率由点C、E在双曲线上,将点C、E的坐标和代入双曲线方程得,①②由①式得,③精彩文档实用标准文案将③式代入②式,整理得,故由题设得,解得所以双曲线的离心率的取值范围为分析:
6、考虑为焦半径,可用焦半径公式,用的横坐标表示,回避的计算,达到设而不求的解题策略.解法二:建系同解法一,,,又,代入整理,由题设得,解得所以双曲线的离心率的取值范围为4、判别式法例3已知双曲线,直线过点,斜率为,当时,双曲线的上支上有且仅有一点B到直线的距离为,试求的值及此时点B的坐标。分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段.从“有且仅有”这个微观入手,对照草图,不难想到:过点B作与平行的直线,必与双曲线C相切.而相切的代数表现形式是所构造方程的判别式精彩文档实用标准文案.由此出发,可设计如下解题思路:把直线l’的方程代入双
7、曲线方程,消去y,令判别式直线l’在l的上方且到直线l的距离为分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B到直线的距离为”,相当于化归的方程有唯一解.据此设计出如下解题思路:转化为一元二次方程根的问题求解问题关于x的方程有唯一解简解:设点为双曲线C上支上任一点,则点M到直线的距离为:于是,问题即可转化为如上关于的方程.由于,所以,从而有于是关于的方程精彩文档实用标准文案由可知:方程的二根同正,故恒成立,于
此文档下载收益归作者所有