激光熔覆原位合成陶瓷相增强fe基熔覆层研究

激光熔覆原位合成陶瓷相增强fe基熔覆层研究

ID:33669084

大小:16.91 MB

页数:168页

时间:2019-02-28

激光熔覆原位合成陶瓷相增强fe基熔覆层研究_第1页
激光熔覆原位合成陶瓷相增强fe基熔覆层研究_第2页
激光熔覆原位合成陶瓷相增强fe基熔覆层研究_第3页
激光熔覆原位合成陶瓷相增强fe基熔覆层研究_第4页
激光熔覆原位合成陶瓷相增强fe基熔覆层研究_第5页
资源描述:

《激光熔覆原位合成陶瓷相增强fe基熔覆层研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、山东大学博士学位论文激光熔覆原位合成陶瓷相增强Fe基熔覆层研究摘要磨损作为工程构件的三大主要失效形式(疲劳、磨损、腐蚀)之一,在工程应用中造成巨大的经济损失。在普通金属材料表面制备耐磨熔覆层,改善材料表面的物理、化学性质增强构件的抗磨损能力,成为了提高产品使用性能,发展维修与再制造技术,延长机械产品使用寿命的重要途径。本文利用激光(c02、Nd:YAG)作为热源,结合原位自生技术在低碳钢基体上熔覆制备了TiB2、TiC、TiB2+TiC增强Fe基耐磨熔覆层,并对熔覆层的微观组织、物相构成、增强相的生长机制、熔覆层磨损性能进行了系统研究,分析了影响熔覆层组织及性能的因素和规律。预涂合金粉

2、末的组分和工艺性能是激光熔覆制备原位自生陶瓷相增强Fe基熔覆层的关键因素。利用Fem30+FeBl6预置粉末,采用C02激光熔覆制备了TiB2增强Fe基熔覆层,所得Fe.n.B复合熔覆层中TiB2呈条、块状均匀分布于基体之中。当熔覆粉末中B,1fi原子比例在1.8:1.2:1之间时可以获得以TiB2+ot.Fe为物相组成的熔覆层,该熔覆层具有较好的抗裂性。采用Fen30+石墨作为预置粉末,C02激光熔覆可以制备原位合成TiC/Fe熔覆层,试验表明在综合考虑石墨和面元素在熔覆过程中的烧损量的情况下,预置粉末中n,C原子比为l:1.3的配比可以促进TiC增强相的生成,提高其在熔覆层中的含量

3、并避免脆性相Fe2n及高碳马氏体的产生。所得熔覆层中TIC以花瓣状和枝晶状存在于Fe基基体之中。采用Nd:YAG固体激光,以Fe+n+B4C为预置粉末,制备了TiB2+TiC联合增强Fe基熔覆层。当预置合金粉末中n和B4C含量按照反应3Ti+B4C=2TiB2+TiC配制,采用较高功率密度时,易因熔覆过程中n元素的烧损导致熔覆层中产生Fe3(B,C)脆性相,而且所得熔覆层中增强相的含量较低。优化试验表明,采用Fe45.Ti41.12.B4C13.88(wt.%)作为预置粉末,较低功率密度时,所得熔覆层物相组成为TiB2,TIC和O【.Fe,避免了脆性相的产生,同时增强相TiB2和TiC

4、IX摘要的含量较高。熔覆层致密、无缺陷,且同基材呈良好冶金结合,TiB2和TiC增强相均匀分布于熔覆层之中,TiB2呈条、块状,TiC粒子为尺寸较小的等轴状和花瓣状。TiB2和TiC可以单独形核、生长,达到双相粒子复合强化的效果。而且增强相生长浓度环境的改变以及增强相之间的竞争生长,使得其在熔覆层基体中的分布更加分散。随着熔覆层稀释率的减小,增强相的含量和尺寸变大;随着熔覆层稀释率的增加,增强相的含量和尺寸减小。对熔覆层合金体系进行热力学分析表明Fe.Ti.B,Fe.Ti.C以及Fe.Ti.B.C体系中TiB2、TiC在300K.2000K区间为稳定存在物相,预置粉末中增强相生成元素的

5、相对原子比例对熔覆层的物相组成具有重要影响。预置合金粉末在激光作用下,首先经历加热过程形成低熔共晶,之后通过元素在熔体中的扩散、化合反应生成细小增强体(TiB2、TiC),在激光持续加热和反应放热的耦合作用下,生成的增强体还可溶解于熔体之中,在随后的冷却过程中增强相通过形核一长大方式生长。原位合成的TiB2和TiC增强相均表现出小平面相特征,激光熔覆快冷过程并未带来增强相生长界面从光滑向粗糙的转交。TiB2增强相的(0001),{1010}界面能较低,具有较慢的生长速度,增强相粒子的形态表现为以(0001)为基面,{1010}为侧面的棱柱形貌。TiC在形成过程中由于晶核在界面前沿熔体扩

6、散驱动力以及成分过冷的作用下易发生界面失稳,枝晶主干沿着[OOll方向发展使增强相生长为花瓣和枝晶状,枝晶端部的显露面为密排{111)平面。此外,在冷凝过程中还会因共晶反应形成细小的棒状和分枝状TiC。(TiB2"+"TiC)/Fe熔覆层中TiB2和TiC可以独立形核长大,其晶体生长惯习性并未改变,但在熔覆层内局部区域发现了TiB2依附TIC长大的现象。通过原位反应生成的增强相同基体界面结合良好、洁净、无附着物及非晶相。室温干滑动磨损试验表明,原位合成TIBJFe、TiC/Fe和(TiB2+TiC)/Fe熔覆层具有良好的抗磨损性能,在同样磨损条件下,熔覆层的摩擦系数平均比母材低0.1-

7、0.15。熔覆层内大量增强相(TiB2、TIC、TiB2+币C)的存在使得磨轮在摩擦过程中对材料的粘着和犁削作用明显减弱,而且增强相在磨损过程中还起到承受载荷以及对熔覆层基体钉扎强化作用,因此使得熔覆层抗磨损性能得到显著提高。原位合成TiB2/Fe熔覆层磨损体积为低碳钢Q235的1/17.1/19,其磨损机制主要为显微切削和硬质相剥落;原位合成TiC/Fe熔覆层的磨损体积为Q235基材X山东大学博士学位论文的1/15—1/16,其磨损机制为显微

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。