• /  5
  • 下载费用: 9.9积分  

导数应用中的恒成立问题论文例探导数应用中的恒成立问题

'导数应用中的恒成立问题论文例探导数应用中的恒成立问题'
导数应用中的恒成立问题论文:例探导数应用中的恒成立问题摘要:利用导数研究函数的单调性、极值、最值以及解决生活中的优化问题有着非常重要的作用,为我们解决函数问题提供了有力的工具。用导数可以解决函数中的最值问题,不等式问题,还可以在知识的网络交汇处设计问题,在高考中占有很重要的地位。因此,在教学中,要突出导数的应用。关键词:导数;应用;函数;恒成立导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值、最值、求曲线的斜率和解决一些物理问题等等的有力工具,对于应用导数解决实践问题,关键是建立恰当的数学模型。本文拟就导数在解决函数应用中的恒成立问题,谈一点个人的感悟和体会。解题规律一:要使得f(x)≥c(或f(x)≤c)(c为常数)在某个区间[a,b]恒成立,先求出f(x)在该区间上的最小值f(x)min(或最大值f(x)max)并且令f(x)min≥c(或f(x)max ≤c)即可解决问题,【例1】已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,xεr).当 x=1时,函数f(x)的极植为-3-c.(1)试确定a,b的值;(2)若对于任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.解:(1)由f(x)=ax3+bx2-c,得f′(x)=3ax2+2bx,∴■得,∴■,∴f(x)=6x3-9x2-c.(2)∵f(x)=6x3-9x2-c,∴f′(x)=18x2-18x=19x(x-1),令f′(x)=0,得x=0或x=1.当x1时,f(x)单调递增;当00恒成立,∴-6x3-9x2-c≥-2c2对任意x>0恒成立,∴-3-c≥-2c2∴c≤-1或c≥■.∴c的取值范围是(-∞,-1]∪[■,+∞).【例2】已知函数f(x)=ax3+cx+d(a≠0)是r上的奇函数,当x=1时f(x)取得极值-2.(1)求f(x)的单调区间和极大值;(2)证明对任意x1,x2ε(-1,1),不等式|f(x1)-f(x2)|0,故f(x)在单调区间(-∞,-1)上是增函数.当xε(-1,1)时,f′(x)0,故f(x)在单调区间(1,+∞)上是增函数.所以,f(x)在x=-1处取得极大值,极大值为f(-1)=2.(2)由(1)知,f(x)=x3-3x(xε[-1,1])是减函数,且f(x)在[-1,1]上的最大值为m=f(-1)=2,最小值为m=f(1)=-2.所以,对任意x1,x2ε(-1,1),恒有|f(x1)-f(x2)|1时,g′(x)=1-a+lnx>1-a≥0,故g(x)在(1,+∞)上为增函数,所以,x≥1时,g(x)≥g(1)=1-a≥0,即f(x)≥ax-1②若a>1,方程g′(x)=0的根为x0=ea-1,此时,若xε(1,x0),则g′(x)  综上,满足条件的a的取值范围是(-∞,1].解法二:依题意得f(x)≥ax-1在[1,+∞)上恒成立,即a≤lnx+■对于xε[1,+∞)恒成立。令g(x)=lnx+■,则g′(x)=■-■=■(1-■).当x>1时,因为g′(x)=■(1-■)>0,故g(x)是(1,+∞)上的增函数,所以g(x)的最小值是g(x)=1,所以a的取值范围是(-∞,1].【例4】设函数f(x)=alnx,若不等式f(x)≥m+x对所有的aε[0,■],xε(1,e2]都成立,求实数m的取值范围。解:若不等式f(x)≥m+x对所有的aε[0,■],xε(1,e2]都成立,则alnx≥m+x对所有的aε[0,■],xε(1,e2]都成立,即m≤alnx-x,对所有的aε[0,■],xε(1,e2]都成立,令h(a)=alnx-x,则h(a)为一次函数,m≤h(a)min,∵xε(1,e2],∴lnx>0,∴h(a)在aε[0,■]上单调递增,∴h(a)min=h(0)=-x,∴m≤-x对所有的xε(1,e2]都成立,∵1<x<e2,∴-e2≤-x<-1,∴m≤g(-x)min=-e2解题规律三:解决形如:f(x)≥g(x)或f(x)≤g(x)在某个区间恒成立时,求参数a的取值范围时可以把问题转化为f(x)min≥g(x)max(或f(x)max≤g(x)min),从而解决问题。【例5】若f(x)=■x2-6x+5lnx,设函数g(x)=x+■,对于任意 x≠0和x1,x2ε(1,5],有|λg(x)|-5ln5≥|f(x1)-f(x2)|恒成立,求实数λ的取值范围。解:∵f(x)=■x2-6x+5lnx,∴f′(x)=x-6+■=■=■ .则x,f(x),f′(x)的变化情况如下:则f(x)极大值=f(1)=-■,f(x)极小值=f(5)=-■+5ln5.∴|f(x1)-f(x2)|≤-■-(-■+5ln5)=12-5ln5.∴|λg(x)|-5ln5≥|f(x1)-f(x2)|恒成立|λg(x)|≥12恒成立.∵|g(x)|=|x+■|=|x|+■≥2,当且仅当x=±1时取等号,∴|λg(x)|min=|2λ|≥12|λ|≥6λ≤-6或λ≥6.在高中数学学习以及历届高考试题中,我们很容易发现导数可以解决函数中的最值问题,不等式问题,还可以在知识的网络交汇处设计问题,在高考中占有很重要的地位。因此,在教学中,要突出导数的应用,特别是对于恒成立问题的探讨。
关 键 词:
导数 应用 中的 成立 问题 论文
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:导数应用中的恒成立问题论文例探导数应用中的恒成立问题
链接地址: https://www.wenku365.com/p-41007030.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开