常系数线性常微分方程.ppt

常系数线性常微分方程.ppt

ID:50335021

大小:1.48 MB

页数:48页

时间:2020-03-12

常系数线性常微分方程.ppt_第1页
常系数线性常微分方程.ppt_第2页
常系数线性常微分方程.ppt_第3页
常系数线性常微分方程.ppt_第4页
常系数线性常微分方程.ppt_第5页
资源描述:

《常系数线性常微分方程.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、常系数高阶线性微分方程一.常系数线性齐次微分方程二.常系数线性非齐次微分方程第六章常系数齐次线性微分方程基本思路:求解常系数线性齐次微分方程求特征方程(代数方程)之根转化第六章二阶常系数齐次线性微分方程:和它的导数只差常数因子,代入①得称②为微分方程①的特征方程,1.当时,②有两个相异实根方程有两个线性无关的特解:因此方程的通解为(r为待定常数),①所以令①的解为②则微分其根称为特征根.2.当时,特征方程有两个相等实根则微分方程有一个特解设另一特解(u(x)待定)代入方程得:是特征方程的重根取u=x,则得因此原方程的通解为3.当时,特征方程有一对共轭复根这时原方程有两个复数解

2、:利用解的叠加原理,得原方程的线性无关特解:因此原方程的通解为小结:特征方程:实根特征根通解以上结论可推广到高阶常系数线性微分方程.若特征方程含k重复根若特征方程含k重实根r,则其通解中必含对应项则其通解中必含对应项特征方程:例1.的通解.解:特征方程特征根:因此原方程的通解为例2.求解初值问题解:特征方程有重根因此原方程的通解为利用初始条件得于是所求初值问题的解为例3.的通解.解:特征方程特征根:因此原方程通解为例4.解:特征方程:特征根:原方程通解:(不难看出,原方程有特解例5.解:特征方程:即其根为方程通解:例6.解:特征方程:特征根为则方程通解:内容小结特征根:(1)

3、当时,通解为(2)当时,通解为(3)当时,通解为可推广到高阶常系数线性齐次方程求通解.思考与练习求方程的通解.答案:通解为通解为通解为思考题为特解的4阶常系数线性齐次微分方程,并求其通解.解:根据给定的特解知特征方程有根:因此特征方程为即故所求方程为其通解为常系数非齐次线性微分方程一、二、第六章二阶常系数线性非齐次微分方程:根据解的结构定理,其通解为非齐次方程特解齐次方程通解求特解的方法根据f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.①—待定系数法一、为实数,设特解为其中为待定多项式,代入原方程,得(1)若不是特征方程的根,则取从而得到特解形式

4、为为m次多项式.Q(x)为m次待定系数多项式(2)若是特征方程的单根,为m次多项式,故特解形式为(3)若是特征方程的重根,是m次多项式,故特解形式为小结对方程①,此结论可推广到高阶常系数线性微分方程.即即当是特征方程的k重根时,可设特解例1.的一个特解.解:本题而特征方程为不是特征方程的根.设所求特解为代入方程:比较系数,得于是所求特解为例2.的通解.解:本题特征方程为其根为对应齐次方程的通解为设非齐次方程特解为比较系数,得因此特解为代入方程得所求通解为例3.求解定解问题解:本题特征方程为其根为设非齐次方程特解为代入方程得故故对应齐次方程通解为原方程通解为由初始条件得于

5、是所求解为解得二、第二步求出如下两个方程的特解分析思路:第一步将f(x)转化为第三步利用叠加原理求出原方程的特解第四步分析原方程特解的特点第一步利用欧拉公式将f(x)变形第二步求如下两方程的特解是特征方程的k重根(k=0,1),故等式两边取共轭:为方程③的特解.②③设则②有特解:第三步求原方程的特解利用第二步的结果,根据叠加原理,原方程有特解:原方程均为m次多项式.第四步分析因均为m次实多项式.本质上为实函数,小结对非齐次方程则可设特解:其中为特征方程的k重根(k=0,1),上述结论也可推广到高阶方程的情形.例4.的一个特解.解:本题特征方程故设特解为不是特征方程的根,代入方

6、程得比较系数,得于是求得一个特解例5.的通解.解:特征方程为其根为对应齐次方程的通解为比较系数,得因此特解为代入方程:所求通解为为特征方程的单根,因此设非齐次方程特解为例6.解:(1)特征方程有二重根所以设非齐次方程特解为(2)特征方程有根利用叠加原理,可设非齐次方程特解为设下列高阶常系数线性非齐次方程的特解形式:思考与练习时可设特解为时可设特解为提示:1.(填空)设2.求微分方程的通解(其中为实数).解:特征方程特征根:对应齐次方程通解:时,代入原方程得故原方程通解为时,代入原方程得故原方程通解为3.已知二阶常微分方程有特解求微分方程的通解.解:将特解代入方程得恒等式比较系

7、数得故原方程为对应齐次方程通解:原方程通解为振动问题当重力与弹性力抵消时,物体处于平衡状态,例1.质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图.设时刻t物位移为x(t).(1)自由振动情况.弹性恢复力物体所受的力有:(虎克定律)成正比,方向相反.建立位移满足的微分方程.据牛顿第二定律得则得有阻尼自由振动方程:阻力(2)强迫振动情况.若物体在运动过程中还受铅直外力则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。