光学显微镜与扫描电镜的区别.doc

光学显微镜与扫描电镜的区别.doc

ID:57411864

大小:127.00 KB

页数:7页

时间:2020-08-16

光学显微镜与扫描电镜的区别.doc_第1页
光学显微镜与扫描电镜的区别.doc_第2页
光学显微镜与扫描电镜的区别.doc_第3页
光学显微镜与扫描电镜的区别.doc_第4页
光学显微镜与扫描电镜的区别.doc_第5页
资源描述:

《光学显微镜与扫描电镜的区别.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、光学显微镜与扫描电镜的区别(二)cyh(2010-07-1311:59:00)   光源不同:    光学显微镜采用可见光作为光源,电子显微镜采用电子束作为光源。    成像原理不同:   光学显微镜利用几何光学成像原理进行成像,电子显微镜利用高能量电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的信号探测器接受物理信号转换成图像信息。    分辨率不同:    光学显微镜因为光的干涉与衍射作用,分辨率只能局限于0.2-0.5um之间。电子显微镜因为采用电子束作为光源,其分辨率可达到1-3nm之间,因此光学显微镜的组织观察属于微米级分析,电子

2、显微镜的组织观测属于纳米级分析。    景深不同:    一般光学显微镜的景深在2-3um之间,因此对样品的表面光滑程度具有极高的要求,所以制样过程相对比较复杂。扫描电镜的景深则可高达几个毫米,因此对样品表面的光滑程度几何没有任何要求,样品制备比较简单,有些样品几乎无需制样。体式显微镜虽然也具有比较大的景深,但其分辨率却非常的低。    应用领域:   光学显微镜主要用于光滑表面的微米级组织观察与测量,因为采用可见光作为光源因此不仅能观察样品表层组织而且在表层以下的一定范围内的组织同样也可被观察到,并且光学显微镜对于色彩的识别非常敏感和准确。电子显微镜主

3、要用于纳米级的样品表面形貌观测,因为扫描电镜是依靠物理信号的强度来区分组织信息的,因此扫描电镜的图像都是黑白的,对于彩色图像的识别扫描电镜显得无能为力。扫描电镜不仅可以观察样品表面的组织形貌,通过使用EDS、WDS、EBSD等不同的附件设备,扫描电镜还可进一步扩展使用功能。通过使用EDS、WDS辅助设备,扫描电镜可以对微区化学成分进行分析,这一点在失效分析研究领域尤为重要。使用EBSD,扫描电镜可以对材料的晶格取向进行研究。断口分析     研究金属断裂面的学科,是断裂学科的组成部分。金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。断口总是发

4、生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。断口分析现已成为对金属构件进行失

5、效分析的重要手段。   断口的宏观和微观观察 断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。   对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。   断口的微观观察经历了光学显微镜(观察断口的实用倍数是在50~500倍间)、透射电子显微镜(观察断口的实用倍数是在1000~4000

6、0倍间)和扫描电子显微镜(观察断口的实用倍数是在20~10000倍间)三个阶段。因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。扫描电子显微镜最能满足上述的综合要求,故近年来对断口观察大多用扫描电子显微镜进行(见金属和合金的微观分析)。   脆性断口和延性断口  根据断裂的性质,断口大致分为几乎不伴随塑性变形而断裂的脆性断口和伴随着明显塑性变形的延性断口。脆性断口的断裂面通常与拉伸应力垂直,宏观上断口由具有光泽的结晶亮面组成;延性断口的断裂面可能同拉伸应力垂直或倾斜,分别称为正断口和斜断口;

7、从宏观来看,断口上有细小凹凸,呈纤维状。对于单轴拉伸断口和冲击断口,在理想情况下,断裂面是由三个明显不同的区域(即纤维区、放射区和剪切唇区)所构成.   这三个区域实际上是裂纹形成区、裂纹扩展区和剪切断裂区(对冲击拉伸则有终了断裂区),通常称它们为断口三要素。对于同一种材料,三个区域的面积及其所占整个断口的比例随外界条件的改变而变化。例如:加载速率愈大,温度愈低,则裂纹扩展区(即放射区)所占的比例也愈大。如果定义裂纹扩展区对另外两个区面积的比值为,则通常把=1时的断裂温度称为材料的韧性-脆性转变温度(或延性-脆性转变温度、塑性-脆性转变温度)。如果在同一

8、温度和加载速率下比较两种材料的断裂性质,则值愈小的材料,其延性(塑性)愈好。  

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。