Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown

Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown

ID:81816583

大小:1.68 MB

页数:6页

时间:2023-07-20

上传者:U-14522
Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown_第1页
Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown_第2页
Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown_第3页
Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown_第4页
Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown_第5页
Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown_第6页
资源描述:

《Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules - Wang et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterEnhancedGatingPerformanceofSingle-MoleculeConductancebyHeterocyclicMolecules##Ya-HaoWang,FengYan,Dong-FangLi,Yan-FengXi,RuiCao,Ju-FangZheng,YongShao,ShanJin,*Jing-ZheChen,*andXiao-ShunZhou*CiteThis:J.Phys.Chem.Lett.2021,12,758−763ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Enhancingthegatingperformanceofsingle-moleculeconductanceissignificantforrealizingmoleculartransistors.Herein,wereportanewstrategytoimprovetheelectrochemicalgatingefficiencyofsingle-moleculeconductancewithfusedmolecularstructuresconsistingofheterocyclicringsoffuran,thiophene,orselenophene.Oneordermagnitudeofgatingratioisachievedwithinapotentialwindowof1.2Vfortheselenophene-basedmolecule,whichissignificantlygreaterthanthatofotherheterocyclicandbenzeneringmolecules.ThisiscausedbythedifferentelectronicstructuresofheterocyclicmoleculesandtransmissioncoefficientsT(E),andpreliminaryresonancetunnelingisachievedthroughthehighestoccupiedmolecularorbitalathighpotential.ThecurrentworkexperimentallyshowsthatelectrochemicalgatingperformancecanbesignificantlymodulatedbythealignmentoftheconductingorbitaloftheheterocyclicmoleculerelativetothemetalFermienergy.abricatingsingle-moleculedeviceshasbeentheultimateTherefore,thesefusedstructureswithdifferentheterocyclicFgoalofelectronicdeviceminimizationsinceAviramandringsmaybealsoappliedtooptimizethegatingefficiencyof1−4electrontransportatthesingle-moleculelevel,butnocasehasRatnerproposedaprototypemolecularrectifierin1974.Benefitingfromthedevelopmentofthesingle-moleculebreakbeenreportedtodate,andaclearcorrelationbetweenthejunctiontechnique,numerousinvestigationshavesuccessfullystructuresofheterocyclicmoleculesandelectrochemicalgatingconstructedandexploredmetal−molecule−metaljunctionsremainsambiguous.overthepasttwodecades.5−9Todate,electrontransportInthiswork,wedesignedandsynthesizedaseriesofthroughsinglemoleculescouldbetunedunderexternalheterocyclicmoleculesoffuran(BT-O),thiophene(BT-S),stimulus,suchaselectricity,10,11light,12−14andpH.15−17andselenophene(BT-Se)connectingdihydrobenzo[b]-DownloadedviaBUTLERUNIVonMay16,2021at06:42:59(UTC).thiophene(BT)throughanethynylspacer.Single-moleculeAmongthem,electrochemicalmodulationprovidesapromis-ingmethodformanipulatingtheenergyalignmentbetweenconductancedependingonappliedgatepotentialsissystem-molecularfrontierorbitalsandFermilevelofmetalelectro-aticallyinvestigatedbyelectrochemicalscanningtunnelingdes.10,18−20Significantresults,suchasredox-enhancedmicroscopybreakjunctions(ECSTM-BJ)in1-butyl-3-Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.tunneling,10,21−24moleculestructuretransforms,25andquan-methylimidazoliumhexafluorophosphate(BMIPF6).Com-tuminterference26,27viaelectrochemicalgating,havebeenbinedwithDFTcalculation,theenhancedgatingratioofconductanceisanalyzedanddiscussedwiththeenergyreported.Inordertorealizefunctionallyelectroniccompo-alignmentbetweenmoleculesandelectrodesandtransmissionnentslikeasingle-moleculeswitchortransistor,mucheffortspectra.Thesingle-moleculeconfigurationfortheroom-hasbeendevotedtoimprovinggatingefficiencyoftemperatureelectrochemicalgatingisconstructedbyECSTM-conductancewithinthelimitedgatepotentialrange,butit21,27BJandschematicallyillustratedinFigure1a.Briefly,theremainsanoutstandingchallenge.encapsulatedAutipandAu(111)substrateactassourceandTypically,theintrinsicpropertyofmolecularstructuredrainelectrodes,whilethePtcounterandreferenceelectrodesgreatlydeterminestheelectrontransportthroughthemetal−28−30serveasgateelectrodes.Withabipotentiostatsetup,themolecule−metaljunction.Recently,moleculeswithfusedstructuresconsistingoforganicbackbonesandheteroa-toms31−35havereceivedwideattention,becausethedoping-Received:November17,2020likeheteroatomsofferauniqueopportunitytomodifyorganicAccepted:December30,2020moleculematerialsandelectrontransportpathways.36ForPublished:January6,2021example,insertingfive-memberedheterocyclicringsinthemolecularbackbonecouldchangethemoleculararomaticity37−39andmodulatethequantumeffectofelectrontransport.©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c03430758J.Phys.Chem.Lett.2021,12,758−763

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.(a)Schematicdiagramofelectrochemicalgatingsingle-moleculeconductanceofheterocyclicmoleculesbySTM-BJ.(b)InvestigatedmolecularstructureofBT-O,BT-S,andBT-Se.Figure2.(a)Representativeconductance−distancetraces(b)andone-dimensionalconductancehistogramofBT-Omeasuredatdifferentgatepotentialswithabiasvoltageof50mV(Esubstrate−Etip).Theconductancepeakcountsarenormalizedbythenumbersofconductancecurvesused.electrochemicalpotentialoftheSTMtipandsubstratecouldsimultaneouslychangedwithafixedbiasof50mV.Accordingbeindependentlycontrolled,andthepotentialdifferencetothecyclicvoltammetryofBT-OonAu(111)inBMIPF6betweenthesetwoelectrodesisthebiasvoltageappliedtothe(FigureS1),thegatepotentialisshiftedfrom−0.9to0.3Vvsmolecularjunction.Theionicliquid(IL)ischosenasPt,whichislimitedbythemoleculardesorptionatnegativeelectrolyteforgatingsingle-moleculeconductance,becauseitvoltageortheoxidationofAuatpositivevoltage.Figure2a18hashighcouplingefficiencywithappliedelectricfield.showstherepresentativeconductance−distancetracesofBT-Figure1bshowsthestructureofinvestigatedmolecules,Oobtainedatdifferentpotentialsofsubstrate,andthesewhicharesynthesizedaccordingtoproceduresdetailedintheplateaufeaturescorrespondtotheformationofmolecular18SupportingInformation.Allmoleculesarepurifiedbyusingjunctions.Clearly,theconductancevaluesincreasefromcolumnchromatographyandcharacterizedbyhigh-resolution10−4.2(6.3×10−5)to10−3.4(4.0×10−4)G(G=2e2/h)as00massspectrometryandNMR.Thetriplebondsmaketheseelectrochemicalpotentialspositivelyscan.Thisindicatesthatmoleculeshavesimilarinternaltorsionangle,whilethetheelectrontunnelingispredominantlythroughthehighestanchoringgroupofBTprovidesauniformbindinggeometryoccupiedmolecularorbitals(HOMOs)ofBT-O,similarto40,4140betweenmoleculeandelectrode,whichresultsinauniquereportedmoleculeswiththesameanchoringgroups.distributionofconductancevalueduringthebreakjunctionTodeterminetheconductancevaluedependingongatemeasurement.Thecyclicunitistheonlydifferenceamongpotential,wealsoconstructone-dimensionalhistogramsinathesemoleculesandallowsustoinvestigatetheimpactofthestatisticalmannerfromthousandsoftraceswithoutanyfive-memberedringonthemodulationofelectrontransportselection.AsshowninFigure2b,thewell-definedpeaksagainstelectrochemicalgatepotentials.coincidewiththestepvaluesinFigure2a.Fromtheplots,itisInordertostudytheconductancegatingbehaviorofobviousthattheconductanceofBT-Ochangesfrom6.3×molecularjunctions,weperformtheconductancemeasure-10−5to4.0×10−4Gwithanincreaseofthegatepotentialby0mentinahigh-purityN2atmosphereatroomtemperature.1.2V,givingoutarelativeconductancevariationof635%.ItisThepotentialsoftarget-moleculecoveredAu(111)andtipareabout6timesgreaterthanthatof1,2-bis(4,4-dimethylth-759https://dx.doi.org/10.1021/acs.jpclett.0c03430J.Phys.Chem.Lett.2021,12,758−763

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.One-dimensionalconductancehistogramof(a)BT-Sand(b)BT-Semeasuredatdifferentgatepotentials.Theconductancepeakcountsarenormalizedbythenumbersofconductancecurvesused.(c)Single-moleculeconductanceofmoleculesdependsonthegatepotential.(d)Summaryhistogramsofgateratioofconductance.iochroman-6-yl)ethylenehavingabenzeneringinsteadof−0.9to0.3V;theconductancevaluesincreasefrom8.9×10−5furan.42Forcomparison,wealsoperformconductanceGto6.3×10−4Gwithagatingratioof708%forBT-Sand00measurementofBT-C(benzeneringinsteadoffuran)at1.2×10−4Gto1.2×10−3Gwithagatingratioof1000%for00differentpotentials(FigureS2),andtheconductancegatingBT-Se.Thisindicatesthatthetypeofheterocyclicringhasaratiois282%,whichis2.3timeslessthanthatofBT-O.greatimpactontheelectrochemicalmodulationofcon-Torevealpossiblereasonsfortheoptimizedgatingratio,theductance.Particularly,theoneorderofmagnitudecontinuouselectronicstructuresofthesefreeBT-CandBT-OaremodulationoftheconductancevalueobservedatBT-SeisanalyzedbyDFTcalculationontheGaussian09softwarecomparabletothegatingratioofelectrochemicalcontrolled4331package(Figure3).Accordingtopreviousreports,thequantuminterferenceatanthraquinone-basedmolecules.intrinsicfrontiermolecularorbitalssignificantlyaffectenergyThus,theseπ-conjugatedmoleculesimplantingwithdifferentalignmentwithmetalelectrodesanddeterminateconductancefive-memberedheterocyclicringsprovidesapromising44,45ofmolecularjunctions.Theoptimizedmolecularstruc-molecularmaterialtoenhancethegatingperformanceofturesaredisplayedinFigureS3.WefindthattheHOMOsandsingle-moleculeconductance.lowestunoccupiedmolecularorbitals(LUMOs)are−5.72andWealsoquantitativelystudytheelectronicstructuresof−1.71eVforBT-Cand−5.20eVand−1.89eVforBT-O.theseisolatedheterocyclicmolecules.SimilartoBT-O,theObviously,replacingthephenylringwithfuranintheenergydiagramsinFigureS3providetheLUMOat−2.07andmolecularbackbonecouldlargelyincreasetheHOMOby−2.16eVandHOMOat−5.24and−5.23eVforBT-Sand0.52eVandgreatlydiminishtheenergybarrierofEF−EHOMOBT-Se,respectively.TheHOMO−LUMOgapdecreasesinaswellastheenergygapofELUMO−EHOMO.AstheHOMOstheorderBT-Se(3.07eV)

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.(a)ExperimentalconductanceandcalculatedT(E)forBT-O,BT-S,andBT-SeasafunctionoftheappliedgatingpotentialvsPt.(b)TheschematicdiagramofelectrochemicalgatingmechanismfornonredoxactivemolecularjunctionsinILs.T(E)dependontheenergylevelofmolecularorbitalsrelativetypecontinuousmodulationbehaviorofelectrontransporttotheFermileveloftheelectrode(E−EF).Obviously,thethroughBT-O,BT-S,andBT-SeisobservedfortheseorderofT(E)aroundE=EFfollowsBT-Se>BT-S>BT-O,nonredoxactiveheterocyclicmoleculesupontheincreasingwhichiswellconsistentwithexperimentalobservationofthegatepotential.Quantitatively,theorderoftheconductancelargestconductancevalueatBT-Se.gateratiofollowsBT-Se(1000%)>BT-S(708%)>BT-OTypically,electrochemicalgatingofsingle-moleculejunc-(635%)>BT-C(282%)inthegatingpotentialrangeof1.2V.tionsisrealizedbyapplyingpotentialonelectrode,whichcanWiththehelpofDFTcalculations,thesignificantimprove-shifttheFermileveloftheelectroderelativetothefrontiermentofconductancegatingratioisattributedtothedifferentorbitalsofmoleculesatthesolid−liquidinterface(Figureelectronicstructuresofheterocyclicmoleculesandtrans-4b).18,21,46,47Qualitatively,theEofelectrodesmovesclosertomissioncoefficientsT(E).ThecurrentworkprovesthattheFEHOMOofmoleculesasthepotentialincreases,leadingtolowerheterocyclicbackbonescanenhancethegatingperformanceenergybarrierheightforelectrontunnelingthroughtheandcanbeusedtodesignahigh-performancemolecularHOMO.Quantitatively,theEFofAusubstratecouldbedevice.calculatedaccordingtotheformulaEF=−4.66−Epotential,whereEpotentialistheappliedpotentialand−4.66eVisthe■ASSOCIATEDCONTENTenergylevelofPtreferenceelectrodedeterminedbyusingthe*sıSupportingInformationredoxpotentialofferrocene(F+/F)asthestandardinTheSupportingInformationisavailablefreeofchargeatccBMIPF(detailsinFigureS5).27Itisreportedthattheworkhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03430.6functionis4.3eVforAucoveredwithself-assembledExperimentaldetailsandmoreexperimentaldataof27monolayers.Thus,theelectrodepotentialisestimatedtoconductancehistograms,molecularstructure(PDF)be−0.36VvsPtatE=EF,andthevariationoftheoreticalT(E)inFigure4aiscomparabletotheexperimental■conductanceatdifferentgatepotentials.TheexperimentalAUTHORINFORMATIONCorrespondingAuthorsconductanceminimumisnotobserved,whilethereisaXiao-ShunZhou−KeyLaboratoryoftheMinistryofconductanceminimumintheoreticalresults.ThisdiscrepancyEducationforAdvancedCatalysisMaterials,InstituteofbetweenexperimentalandtheoreticalresultsmightarisefromPhysicalChemistry,ZhejiangNormalUniversity,Jinhuathesimulatedmodelsignoringtheelectrochemicalionsand321004,China;orcid.org/0000-0003-1673-8125;solvents,andtheexperimentalminimummaybefoundinEmail:xszhou@zjnu.edu.cnmorenegativepotentials.However,thedesorptionofthoseShanJin−KeyLaboratoryofPesticideandChemicalBiology,moleculeshappensinthissituation,andthesingle-moleculeMinistryofEducation,CollegeofChemistry,CentralChinaconductancemeasurementcannotbecarriedout.Interestingly,NormalUniversity,Wuhan430079,China;orcid.org/theconductancevalueofthesethreeheterocyclicmolecules0000-0002-1070-5456;Email:jinshan@mail.ccnu.edu.cnexponentiallyincreasesabove0V,whichmightarisefromJing-ZheChen−DepartmentofPhysics,ShanghaiUniversity,preliminaryresonancetunnelingastheEF−EHOMOshrinkstoShanghai200444,China;orcid.org/0000-0002-0003-reachstrongalignmentbetweenelectrodeandadsorbed3457;Email:jingzhe@shu.edu.cnmolecules.Thus,theheterocyclicmoleculeswiththeuniqueintrinsicpropertiesofferagoodmaterialforenhancinggatingAuthorsefficiencyofsingle-moleculeconductance.Ya-HaoWang−KeyLaboratoryoftheMinistryofEducationInconclusion,thenewstrategyofusingfive-memberedforAdvancedCatalysisMaterials,InstituteofPhysicalheterocycliccompoundsissuccessfullyappliedtoimprovetheChemistry,ZhejiangNormalUniversity,Jinhua321004,electrochemicalgatingofsingle-moleculeconductance.Ap-China;orcid.org/0000-0001-5943-8646761https://dx.doi.org/10.1021/acs.jpclett.0c03430J.Phys.Chem.Lett.2021,12,758−763

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFengYan−KeyLaboratoryofPesticideandChemicalBiology,(8)Xiang,D.;Jeong,H.;Lee,T.;Mayer,D.MechanicallyMinistryofEducation,CollegeofChemistry,CentralChinacontrollablebreakjunctionsformolecularelectronics.Adv.Mater.NormalUniversity,Wuhan430079,China2013,25,4845−4867.Dong-FangLi−KeyLaboratoryoftheMinistryofEducation(9)Xu,B.;Tao,N.J.Measurementofsingle-moleculeresistancebyrepeatedformationofmolecularjunctions.Science2003,301,1221−forAdvancedCatalysisMaterials,InstituteofPhysical1223.Chemistry,ZhejiangNormalUniversity,Jinhua321004,(10)Kay,N.J.;Higgins,S.J.;Jeppesen,J.O.;Leary,E.;Lycoops,J.;China;SantenPharmaceutical(China)Co.,Ltd.,SuzhouUlstrup,J.;Nichols,R.J.Single-moleculeelectrochemicalgatingin215026,Chinaionicliquids.J.Am.Chem.Soc.2012,134,16817−16816.Yan-FengXi−KeyLaboratoryofPesticideandChemical(11)Song,H.;Kim,Y.;Jang,Y.H.;Jeong,H.;Reed,M.A.;Lee,T.Biology,MinistryofEducation,CollegeofChemistry,CentralObservationofmolecularorbitalgating.Nature2009,462,1039−ChinaNormalUniversity,Wuhan430079,China1043.RuiCao−DepartmentofPhysics,ShanghaiUniversity,(12)Cai,S.;Deng,W.;Huang,F.;Chen,L.;Tang,C.;He,W.;Shanghai200444,ChinaLong,S.;Li,R.;Tan,Z.;Liu,J.;etal.Light-drivenreversibleJu-FangZheng−KeyLaboratoryoftheMinistryofEducationintermolecularprotontransferatsingle-moleculejunctions.Angew.forAdvancedCatalysisMaterials,InstituteofPhysicalChem.,Int.Ed.2019,58,3829−3833.(13)Jia,C.;Migliore,A.;Xin,N.;Huang,S.;Wang,J.;Yang,Q.;Chemistry,ZhejiangNormalUniversity,Jinhua321004,Wang,S.;Chen,H.;Wang,D.;Feng,B.;etal.CovalentlybondedChinasingle-moleculejunctionswithstableandreversiblephotoswitchedYongShao−KeyLaboratoryoftheMinistryofEducationforconductivity.Science2016,352,1443−1445.AdvancedCatalysisMaterials,InstituteofPhysical(14)Sendler,T.;Luka-Guth,K.;Wieser,M.;Lokamani;Wolf,J.;Chemistry,ZhejiangNormalUniversity,Jinhua321004,Helm,M.;Gemming,S.;Kerbusch,J.;Scheer,E.;Huhn,T.;etal.China;orcid.org/0000-0003-0834-6244Light-inducedswitchingoftunablesingle-moleculejunctions.Adv.Sci.Completecontactinformationisavailableat:2015,2,1500017.(15)Brooke,R.J.;Szumski,D.S.;Vezzoli,A.;Higgins,S.J.;Nichols,https://pubs.acs.org/10.1021/acs.jpclett.0c03430R.J.;Schwarzacher,W.DualcontrolofmolecularconductancethroughpHandpotentialinsingle-moleculedevices.NanoLett.2018,AuthorContributions18,1317−1322.#Y.-H.W.andF.Y.contributedequallytothiswork.(16)Li,Z.;Smeu,M.;Afsari,S.;Xing,Y.;Ratner,M.A.;Borguet,E.NotesSingle-moleculesensingofenvironmentalpH-anSTMbreakjunctionTheauthorsdeclarenocompetingfinancialinterest.andNEGF-DFTapproach.Angew.Chem.,Int.Ed.2014,53,1098−1102.■(17)Liu,X.;Li,X.;Sangtarash,S.;Sadeghi,H.;Decurtins,S.;Haner,̈ACKNOWLEDGMENTSR.;Hong,W.;Lambert,C.J.;Liu,S.-X.Probinglewisacid−baseWearethankfulforfinancialsupportfromtheNationalinteractionsinsingle-moleculejunctions.Nanoscale2018,10,18131−NaturalScienceFoundationofChina(21872126,21872062,18134.22072053,21573198,and11404206),theZhejiangProvincial(18)Huang,C.;Rudnev,A.V.;Hong,W.;Wandlowski,T.BreakNaturalScienceFoundationofChina(LR15B030002andjunctionunderelectrochemicalgating:testbedforsingle-moleculeLQ21B030010),theFundamentalResearchFundsfortheelectronics.Chem.Soc.Rev.2015,44,889−901.CentralUniversities(CCNU19TS008),theIndependent(19)Guo,S.;Artes,J.M.;Díez-Pérez,I.Electrochemically-gated́DesigningScientificResearchProjectofZhejiangNormalsingle-moleculeelectricaldevices.Electrochim.Acta2013,110,741−753.University(2020ZS03),andtheProgramforAssociate(20)Peng,L.L.;Chen,F.;Hong,Z.W.;Zheng,J.F.;Fillaud,L.;ProfessorofSpecialAppointment(YoungEasternScholar)Yuan,Y.;Huang,M.L.;Shao,Y.;Zhou,X.S.;Chen,J.Z.;etal.atShanghaiInstitutionsofHigherLearning..Precisetuningofsinglemoleculeconductanceinanelectrochemicalenvironment.Nanoscale2018,10,7026−7032.■REFERENCES(21)Zhang,F.;Wu,X.H.;Zhou,Y.-F.;Wang,Y.H.;Zhou,X.S.;(1)Aviram,A.;Ratner,M.A.Molecularrectifiers.Chem.Phys.Lett.Shao,Y.;Li,J.-F.;Jin,S.;Zheng,J.-F.Improvinggatingefficiencyof1974,29,277−283.electrontransportthroughredox-activemolecularjunctionswith(2)Moth-Poulsen,K.;Bjørnholm,T.Molecularelectronicswithconjugatedchains.ChemElectroChem2020,7,1337−1341.singlemoleculesinsolid-statedevices.Nat.Nanotechnol.2009,4,(22)Zhou,X.S.;Liu,L.;Fortgang,P.;Lefevre,A.S.;Serra-Muns,551−556.A.;Raouafi,N.;Amatore,C.;Mao,B.-W.;Maisonhaute,E.;(3)Ratner,M.Abriefhistoryofmolecularelectronics.Nat.Schöllhorn,B.Domolecularconductancescorrelatewithelectro-Nanotechnol.2013,8,378−381.chemicalrateconstants?Experimentalinsights.J.Am.Chem.Soc.(4)Xiang,D.;Wang,X.;Jia,C.;Lee,T.;Guo,X.Molecular-scale2011,133,7509−7516.electronics:Fromconcepttofunction.Chem.Rev.2016,116,4318−(23)Osorio,H.M.;Catarelli,S.;Cea,P.;Gluyas,J.B.G.;Hartl,F.;4440.Higgins,S.J.;Leary,E.;Low,P.J.;Martín,S.;Nichols,R.J.;etal.(5)Kiguchi,M.;Nakashima,S.;Tada,T.;Watanabe,S.;Tsuda,S.;Electrochemicalsingle-moleculetransistorswithoptimizedgateTsuji,Y.;Terao,J.Single-moleculeconductanceofπ-conjugatedcoupling.J.Am.Chem.Soc.2015,137,14319−14328.rotaxane:Newmethodformeasuringstipulatedelectricconductance(24)Pobelov,I.V.;Li,Z.;Wandlowski,T.Electrolytegatinginofπ-conjugatedmolecularwireusingSTMbreakjunction.Smallredox-activetunnelingjunctionsanelectrochemicalSTMapproach.2012,8,726−730.J.Am.Chem.Soc.2008,130,16045−16054.(6)Leary,E.;Gonzalez,M.T.;vanderPol,C.;Bryce,M.R.;́(25)Brooke,R.J.;Jin,C.;Szumski,D.S.;Nichols,R.J.;Mao,B.W.;Filippone,S.;Martín,N.;Rubio-Bollinger,G.;Agraït,N.Unambig-Thygesen,K.S.;Schwarzacher,W.Single-moleculeelectrochemicaluousone-moleculeconductancemeasurementsunderambienttransistorutilizinganickel-pyridylspinterface.NanoLett.2015,15,conditions.NanoLett.2011,11,2236−2241.275−280.(7)Tao,C.-P.;Jiang,C.-C.;Wang,Y.-H.;Zheng,J.-F.;Shao,Y.;(26)Bai,J.;Daaoub,A.;Sangtarash,S.;Li,X.;Tang,Y.;Zou,Q.;Zhou,X.-S.Single-moleculesensingofinterfacialacid−baseSadeghi,H.;Liu,S.;Huang,X.;Tan,Z.;etal.Anti-resonancefeatureschemistry.J.Phys.Chem.Lett.2020,11,10023−10028.ofdestructivequantuminterferenceinsingle-moleculethiophene762https://dx.doi.org/10.1021/acs.jpclett.0c03430J.Phys.Chem.Lett.2021,12,758−763

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterjunctionsachievedbyelectrochemicalgating.Nat.Mater.2019,18,B.;Petersson,G.A.;etal..Gaussian09;Gaussian,Inc.:Wallingford,364−369.CT,2009.(27)Huang,B.;Liu,X.;Yuan,Y.;Hong,Z.-W.;Zheng,J.F.;Pei,L.(44)HoChoi,S.;Kim,B.;Frisbie,C.D.ElectricalresistanceoflongQ.;Shao,Y.;Li,J.-F.;Zhou,X.-S.;Chen,J.Z.;etal.Controllingandconjugatedmolecularwires.Science2008,320,1482−1486.observingsharp-valleyedquantuminterferenceeffectinsingle(45)Fujii,S.;Marques-González,S.;Shin,J.-Y.;Shinokubo,H.;́molecularjunctions.J.Am.Chem.Soc.2018,140,17685−17690.Masuda,T.;Nishino,T.;Arasu,N.P.;Vazquez,H.;Kiguchi,M.́(28)Dadosh,T.;Gordin,Y.;Krahne,R.;Khivrich,I.;Mahalu,D.;Highly-conductingmolecularcircuitsbasedonantiaromaticity.Nat.Frydman,V.;Sperling,J.;Yacoby,A.;Bar-Joseph,I.MeasurementofCommun.2017,8,15984.theconductanceofsingleconjugatedmolecules.Nature2005,436,(46)Wang,Y.H.;Hong,Z.W.;Sun,Y.Y.;Li,D.F.;Han,D.;677−680.Zheng,J.F.;Niu,Z.J.;Zhou,X.S.Tunnelingdecayconstantof(29)Choi,S.H.;Risko,C.;Delgado,M.C.R.;Kim,B.;Bredas,J.L.;́alkanedicarboxylicacids:differentdependenceonthemetalelectro-Frisbie,C.D.Transitionfromtunnelingtohoppingtransportinlong,desbetweenairandelectrochemistry.J.Phys.Chem.C2014,118,conjugatedoligo-iminewiresconnectedtometals.J.Am.Chem.Soc.18756−18761.2010,132,4358−4368.(47)Li,Z.;Li,H.;Chen,S.;Froehlich,T.;Yi,C.;Schönenberger,(30)Chen,L.;Wang,Y.-H.;He,B.;Nie,H.;Hu,R.;Huang,F.;Qin,C.;Calame,M.;Decurtins,S.;Liu,S.-X.;Borguet,E.RegulatingaA.;Zhou,X.-S.;Zhao,Z.;Tang,B.Z.Multichannelconductanceofbenzodifuransinglemoleculeredoxswitchviaelectrochemicalgatingfoldedsingle-moleculewiresaidedbythrough-spaceconjugation.andoptimizationofmolecule/electrodecoupling.J.Am.Chem.Soc.Angew.Chem.,Int.Ed.2015,54,4231−4235.2014,136,8867−8870.(31)Liu,X.;Sangtarash,S.;Reber,D.;Zhang,D.;Sadeghi,H.;Shi,J.;Xiao,Z.Y.;Hong,W.;Lambert,C.J.;Liu,S.X.Gatingofquantuminterferenceinmolecularjunctionsbyheteroatomsubstitution.Angew.Chem.,Int.Ed.2017,56,173−176.(32)Cai,Z.;Lo,W.-Y.;Zheng,T.;Li,L.;Zhang,N.;Hu,Y.;Yu,L.Exceptionalsingle-moleculetransportpropertiesofladder-typeheteroacenemolecularwires.J.Am.Chem.Soc.2016,138,10630−10635.(33)Xie,Z.;Baldea,I.;Oram,S.;Smith,C.E.;Frisbie,C.D.Effect̂ofheteroatomsubstitutionontransportinalkanedithiol-basedmoleculartunneljunctions:evidenceforuniversalbehavior.ACSNano2017,11,569−578.(34)Herrer,I.L.;Ismael,A.K.;Milan,D.C.;Vezzoli,A.;Martín,S.;́Gonzalez-Orive,A.;Grace,I.;Lambert,C.;Serrano,J.L.;Nichols,R.́J.;etal.Unconventionalsingle-moleculeconductancebehaviorforanewheterocyclicanchoringgroup:Pyrazolyl.J.Phys.Chem.Lett.2018,9,5364−5372.(35)Wang,Y.H.;Huang,H.;Yu,Z.;Zheng,J.F.;Shao,Y.;Zhou,X.S.;Chen,J.Z.;Li,J.F.Modulatingelectrontransportthroughsingle-moleculejunctionsbyheteroatomsubstitution.J.Mater.Chem.C2020,8,6826−6831.(36)Xie,Z.;Baldea,I.;Oram,S.;Smith,C.E.;Frisbie,C.D.Effect̂ofheteroatomsubstitutionontransportinalkanedithiol-basedmoleculartunneljunctions:evidenceforuniversalbehavior.ACSNano2017,11,569−578.(37)Chen,W.;Li,H.;Widawsky,J.R.;Appayee,C.;Venkataraman,L.;Breslow,R.Aromaticitydecreasessingle-moleculejunctionconductance.J.Am.Chem.Soc.2014,136,918−920.(38)Borges,A.;Solomon,G.C.Effectsofaromaticityandconnectivityontheconductanceoffive-memberedrings.J.Phys.Chem.C2017,121,8272−8279.(39)Yang,Y.;Gantenbein,M.;Alqorashi,A.;Wei,J.;Sangtarash,S.;Hu,D.;Sadeghi,H.;Zhang,R.;Pi,J.;Chen,L.;etal.Heteroatom-inducedmolecularasymmetrytunesquantuminterferenceinchargetransportthroughsingle-moleculejunctions.J.Phys.Chem.C2018,122,14965−14970.(40)Moreno-García,P.;Gulcur,M.;Manrique,D.Z.;Pope,T.;Hong,W.;Kaliginedi,V.;Huang,C.;Batsanov,A.S.;Bryce,M.R.;Lambert,C.;etal.Single-moleculeconductanceoffunctionalizedoligoynes:lengthdependenceandjunctionevolution.J.Am.Chem.Soc.2013,135,12228−12240.(41)Kaliginedi,V.;V.Rudnev,A.;Moreno-García,P.;Baghernejad,M.;Huang,C.;Hong,W.;Wandlowski,T.Promisinganchoringgroupsforsingle-moleculeconductancemeasurements.Phys.Chem.Chem.Phys.2014,16,23529−23539.(42)Capozzi,B.;Chen,Q.;Darancet,P.;Kotiuga,M.;Buzzeo,M.;Neaton,J.B.;Nuckolls,C.;Venkataraman,L.Tunablechargetransportinsingle-moleculejunctionsviaelectrolyticgating.NanoLett.2014,14,1400−1404.(43)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,763https://dx.doi.org/10.1021/acs.jpclett.0c03430J.Phys.Chem.Lett.2021,12,758−763

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭