三角形全等的判定SAS时只是课件.ppt

三角形全等的判定SAS时只是课件.ppt

ID:59532519

大小:911.00 KB

页数:13页

时间:2020-11-09

三角形全等的判定SAS时只是课件.ppt_第1页
三角形全等的判定SAS时只是课件.ppt_第2页
三角形全等的判定SAS时只是课件.ppt_第3页
三角形全等的判定SAS时只是课件.ppt_第4页
三角形全等的判定SAS时只是课件.ppt_第5页
资源描述:

《三角形全等的判定SAS时只是课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、三角形全等的判定SAS时还记得作一个角等于已知角的方法吗?做一做:先任意画出△ABC.再画一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.(即有两边和它们的夹角相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?画法:2.在射线A′M上截取A′B′=AB3.在射线A′N上截取A′C′=AC1.画∠MA′N=∠A4.连接B′C′∴△A′B′C′就是所求的三角形.三角形全等判定二:两边和它们的夹角对应相等的两个三角形全等.(可以简写成“边角边”或“SAS”)用数学语言表述:ABCDEF在△ABC和△DEF中

2、∴△ABC≌△DEF(SAS)AB=DE∠B=∠EBC=EF探究的结果反映了什么规律?【例1】已知:如图,AC=AD,∠CAB=∠DAB求证:△ACB≌△ADBAC=AD(已知)∠CAB=∠DAB(已知)AB=AB(公共边)∴△ACB≌△ADB(SAS)证明:在△ACB和△ADB中ABCD1.如图,去修补一块玻璃,问带哪一块玻璃去可以使得新玻璃与原来的完全一样?ⅠⅡⅢ知识应用分析:带Ⅲ去,可以根据SAS得到与原三角形全等的一个三角形.2.已知:AD=CD,BD平分∠ADC求证:(1)∠A=∠C(2)AB=BCABCD12归纳:证明两条

3、线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得到.分析:可先证△ABD≌△CBD(SAS)再根据全等三角形的性质证角或线段相等.1.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBAAD=CB(已知)∠1=∠2(已知)AC=CA(公共边)∴△ADC≌△CBA(SAS)证明:∵AD∥BC∴∠1=∠2(两直线平行,内错角相等)在△DAC和△BCA中DC1A2B2.根据题中条件,分别找出各题中的全等三角形.ABC40°DEF(1)(1)△ABC≌△EFD根据“SAS”(2)△ADC≌△CBA根据“SAS”40°DCA

4、B(2)3.(楚雄·中考)如图,点A、E、B、D在同一条直线上,AE=DB,AC=DF,AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由._F_E_B_A_C_DAC=DF已知)∴∠A=∠D(已证)AB=DE(已证)∴△EFD≌△CBA(SAS).【解析】∵AC∥DF∴∠A=∠D(两直线平行,内错角相等)又∵AE=DB∴AE+BE=DB+BE,即AB=DE.在△EFD和△BCA中∴BC=EF()∴∠ABC=∠DEF(全等三角形的对应角相等)∴EF‖BC(内错角相等,两直线平行)全等三角形的对应边相等通过本课时的学习,需要我们掌

5、握:1.根据边角边定理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。