实验讲义 材料的拉伸实验

实验讲义 材料的拉伸实验

ID:12318267

大小:107.00 KB

页数:10页

时间:2018-07-16

实验讲义 材料的拉伸实验_第1页
实验讲义 材料的拉伸实验_第2页
实验讲义 材料的拉伸实验_第3页
实验讲义 材料的拉伸实验_第4页
实验讲义 材料的拉伸实验_第5页
资源描述:

《实验讲义 材料的拉伸实验》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验二材料的拉伸实验概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。一、金属的拉伸实验(一)实验目的1.测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z。2.测定铸铁的抗拉强度Rm。3.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)。4.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。(二)实验原理依据国标GB/T228-2002《金属室温拉

2、伸实验方法》分别叙述如下:1.低碳钢试样。在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1示的F—ΔL曲线。图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的拉伸曲线会因试样尺寸不同而各异。为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉               

3、         Fa-比例伸长力;Fc-弹性伸长力;Fsu-上屈服力;Fsl-下屈服力;Fb-最大力;Ff-断裂力;-断裂后塑性伸长;-弹性伸长;图1碳钢拉伸曲线伸曲线图的纵坐标(力F)除以试样原始横截面面积S0,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2示。从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。拉伸试验过程分为四个阶段,如图1、图2所示。(1)弹性阶段OC。在此阶段中的OA段拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2示。若当应力继续增加到C点

4、时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。用精密仪器测定其塑性应变约为规定的引伸计标距的0.2%所对应的强度值定义为规定非比例延伸强度,它是控制材料在弹性变形范围内工作的有效指标。在工程上有实用价值。 -比例极限;-弹性极限;-上屈服点;-下屈服点;-抗拉强度;-断裂应力;-断裂后的塑性应变;-弹性应变 图2低碳钢应力-应变图(2)屈服阶段SK。当应力超过弹性极限到达锯齿状曲线时,示力盘上的主针暂停转动或开始回转并往复运动,这时若试样表面经过磨光,可看到表征晶体滑移的迹线,大约与试样轴线成45°方向。这种现象表征试样在承受的拉力不继续增加

5、或稍微减少的情况下变形却继续伸长,称为材料的屈服,其应力称为屈服点(屈服应力)。示力盘的指针首次回转前的最大力(Fsu上屈服力)或不计初始瞬时效应(不计载荷首次下降的最低点)时的最小力(FsL下屈服力),分别所对应的应力为上、下屈服点。示力盘的主针回转后所指示的最小载荷(第一次下降后的最小载荷)即为屈服载荷Fs。由于上屈服点受变形速度及试样形状等因素的影响,而下屈服点则比较稳定,故工程中一般只定下屈服点。屈服应力是衡量材料强度的一个重要指标。(3)强化阶段KE。过了屈服阶段以后,试样材料因塑性变形其内部晶体组织结构重新得到了调整,其抵抗变形的能力有所增强,随着拉力的增加,伸长变

6、形也随之增加,拉伸曲线继续上升。KE曲线段称为强化阶段,随着塑性变形量的增大,材料的力学性能发生变化,即材料的变形抵抗力提高,塑性降低。在强化阶段卸载,弹性变形会随之消失,塑性变形将会永久保留下来。强化阶段的卸载路径与弹性阶段平行,卸载后重新加载时,加载线与弹性阶段平行,重新加载后,材料的比例极限明显提高,而塑性性能会相应下降。这种现象叫做形变硬化或冷作硬化。当拉力增加,拉伸曲线到达顶点E时,示力盘上的主针开始返回,而副针所指的最大拉力为Fm,由此可求得材料的抗拉强度。它也是材料强度性能的重要指标。(4)局部变形阶段EG(颈缩和断裂阶段)。对于塑性材料来说,在承受拉力Fm以前,

7、试样发生的变形各处基本上是均匀的。在达到Fm以后,变形主要集中于试样的某一局部区域,该处横截面面积急剧减小,这种现象即是“颈缩”现象,此时拉力随着下降,直至试样被拉断,其断口形状呈碗状,如图3a)所示。试样拉断后,弹性变形立即消失,而塑性变形则保留在拉断的试样上。利用试样标距内的塑性变形来计算材料的断后延伸率A11.3和断面收缩率Z。图3拉伸试样断口形状 2.铸铁试样。做拉伸试验时,利用试验机的自动绘图器绘出铸铁的拉伸曲线,如图4示。在整个拉伸过程中变形很小,无屈服、颈缩现象,拉伸曲线无直线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。