整式的加减(一)——合并同类项(基础)知识讲解

整式的加减(一)——合并同类项(基础)知识讲解

ID:21031818

大小:226.00 KB

页数:4页

时间:2018-10-18

整式的加减(一)——合并同类项(基础)知识讲解_第1页
整式的加减(一)——合并同类项(基础)知识讲解_第2页
整式的加减(一)——合并同类项(基础)知识讲解_第3页
整式的加减(一)——合并同类项(基础)知识讲解_第4页
资源描述:

《整式的加减(一)——合并同类项(基础)知识讲解》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、整式的加减(一)——合并同类项(基础)撰稿:孙景艳审稿:赵炜【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并;2.掌握同类项的有关应用;3.体会整体思想即换元的思想的应用.【要点梳理】【高清课堂:整式加减(一)合并同类项同类项】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,

2、其本身也是它的同类项.要点二、合并同类项1.概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法的分配律逆用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中照抄.(2)系数相加(减),字母部分不变,不能把字母的指数也相加(减).【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)与;(2)与;(3)与;(4)与【答案与解析】本题应用同类项的概念与识别进行判断:(

3、1)(4)是同类项;(2)不是同类项,因为与所含字母的指数不相等;(3)不是同类项,因为与所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.举一反三:【变式】下列每组数中,是同类项的是().①2x2y3与x3y2②-x2yz与-x2y③10mn与④(-a)5与(-3)5⑤-3x2y与0.5yx2⑥-125与A.①②③B.①③④⑥C.③⑤⑥D.只有⑥【答案】C2.已知与是同类项,那么的值为__________,的值为

4、_________.【答案】1,2【解析】根据同类项的定义可得:,解得:.【总结升华】概念的灵活运用.举一反三:【高清课堂:整式加减(一)合并同类项例1】【变式】例1、已知和是同类项,试求的值.【答案】类型二、合并同类项3.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5【答案与解析】(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2

5、y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每步照抄;第二步:利用分配律,把同类项的系数加在一起(用括号括起),字母和字母的指数保持不变;第三步:写出合并后的结果.4.已知,求m+n-p的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着与

6、是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴m+n-p=1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.举一反三:【变式】若与的和是单项式,则  ,  .【答案】4,2.类型三、化简求值5.当时,分别求出下列各式的值.(1);(2)【答案与解析】(1)把当作一个整体,先化简再求值:又所以,原式=(2)先合并同类项,再代入求值.解:当p=2,q=1时,原式=.【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式

7、的值.举一反三:【变式】先化简,再求值:(1),其中;(2),其中,.【答案】解本题的关键是先合并同类项再将值代入(1)原式,当时,原式=.(2)原式,当,时,原式=.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x=0.16,y=-0.2时,求6x3-2x3y-4x3+2x3y-2x3+15的值.题目出完后,小明说:“老师给的条件x=0.16,y=-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常

8、数,则小明说得有道理,否则,王光说得有道理.【答案与解析】解:=(6-4-2)x3+(-2+2)x3y+15=15通过合并可知,合并后的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。