Electric vehicle’s energy consumption of car-following

Electric vehicle’s energy consumption of car-following

ID:40893893

大小:684.12 KB

页数:7页

时间:2019-08-10

上传者:新起点
Electric vehicle’s energy consumption of car-following_第1页
Electric vehicle’s energy consumption of car-following_第2页
Electric vehicle’s energy consumption of car-following_第3页
Electric vehicle’s energy consumption of car-following_第4页
Electric vehicle’s energy consumption of car-following_第5页
资源描述:

《Electric vehicle’s energy consumption of car-following》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

NonlinearDyn(2013)71:323329DOI10.1007/s11071-012-0663-0ORIGINALPAPERElectricvehicle’senergyconsumptionofcar-followingmodelsShichunYang·ChengDeng·TieqiaoTang·YongshengQianReceived:7October2012/Accepted:25October2012/Publishedonline:9November2012©SpringerScience+BusinessMediaDordrecht2012AbstractInthispaper,weusetheoptimalvelocitytionandexhaustemission.Thus,researchersdevel-model,fullvelocitydifferencemodel,fullvelocityandopedsomemodelstostudythevehiclesenergycon-accelerationdifferencemodel,andthecar-followingsumptionandexhaustemissionandfoundthattheve-modelwithconsiderationofthetrafficinterruptionhiclesenergyconsumptionandexhaustemissionareprobabilitytostudytheelectricvehicleselectricitybothrelatedtoitsspeedandacceleration[613],butenergyconsumption.Thenumericalresultsshowthatthesemodelscannotbeusedtostudytheelectricvehi-theelectricvehicleselectricityenergyconsumptioncleselectricityenergyconsumption.ismoststableinthefourthmodelandthatthefourthInthispaper,weusetheoptimalvelocity(OV)modelcanreducetheelectricvehicleselectricityen-model[14],fullvelocitydifference(FVD)modelergyconsumption.[15],fullvelocityandaccelerationdifference(FVAD)model[16],andthecar-followingmodel[17]tostudytheelectricvehicleselectricityenergyconsumption.KeywordsCar-followingmodel·Electricitypower·Electricityenergyconsumption·Numericaltest2Therelatedmodels1IntroductionTheOVmodel[14]canbewrittenasfollows:dvi(t)Sofar,researchershaveproposedmanytrafficflow=αVsi(t)−vi(t),(1)dtmodelstostudytheexistingtrafficproblems(e.g.,jam,accident,pollution,etc.)[15].Thesemodelscande-wherevi(t),si(t)=xi−1(t)−xi(t)are,respectively,scribemanycomplextrafficphenomena,buttheycan-theithvehiclesspeedandheadwayattimet(xi(t)isnotbeusedtostudythevehiclesenergyconsump-theithvehiclesposition),αisthereactiontime,V(·)istheoptimalvelocityfunctionanddefinedasfollows:V(s)=V1+V2tanh(C1s−C2),(2)S.Yang·C.Deng·T.Tang()SchoolofTransportationScienceandEngineering,whereV1,V2,C1,C2arefourparameters.TherelatedBeihangUniversity,Beijing100191,Chinae-mail:tieqiaotang@buaa.edu.cnparametersaredefinedasfollows[18]:α=0.85s−1,VY.Qian1=6.75m/s,V2=7.91m/s,SchoolofTrafficandTransportation,LanzhouJiaoTong(3)−1,CUniversity,Lanzhou,Gansu730070,ChinaC1=0.13m2=1.57. 324S.Yangetal.TheFVDmodelcanbeformulatedasfollows:wherePb-outistheoutputpoweroftheelectricve-hiclesbattery,δisafactorrelatedtotheelectricdvi(t)=αVsi(t)−vi(t)+λvi(t),(4)vehiclesmass,mistheelectricvehiclesmass,fdtistherollingresistancecoefficient,iisthegradewherevi(t)=vi−1(t)−vi(t)isthespeeddiffer-whichconsidersthegradingresistance,CDistheaero-encebetweentheithvehicleanditsprecedingvehicle.dynamicdragcoefficient,AistheelectricvehiclesHere,α=0.41s−1andλisdefinedasfollows:frontalarea,ρistheairdensity,ηteistheelectricve-hiclestransmissionefficiency,ηmisthemotoreffi-0.5s≤100mciency.λ=(5)Inrealtrafficsystem,thetraditionalvehiclesbrak-0otherwise.ingenergyisoftenwastedwhiletheelectricvehiclesTheFVADmodelcanbewrittenasfollows:brakingenergycanpartlyberecoveredandrestoredintothebattery.Thus,basedonEq.(8),theelectricdvi(t)=αVsi(t)−vi(t)+λvi(t)vehiclesregenerativebrakingpowercanbedefineddtasfollows:+gai(t−1),ai−1(t)ai(t−1),dvρCDA2dvi−1(t)Pb-in=kvηteηmδm+mg(f+i)+v,ai(t)=ai−1(t)−ai(t)=dt2dt(6)(9)dvi(t)−,dtwherek(00ingenergythatcanberecoveredbythemotor(calledgai(t−1),ai−1(t)=andai−1(t)≤0,theregenerativebrakingfactor)andtheregenerative⎪⎩brakingfactorkisafunctionofthepropertiesofthe1,otherwise,electricvehiclesbraking,thebatterypropertiesandotherfactors.whereai(t)istheaccelerationdifferencebetweenHere,wedonotuseEqs.(8)and(9)toexploretheithvehicleanditsprecedingvehicle.Therelatedtheelectricvehicleselectricityenergyconsumptionparametersarethesameasthoseofthemodel[15].sincetheyconsidertoomanyfactors.Forsimplicity,Thecar-followingmodelwiththetrafficinterrup-weassumethattheroadhasnograding,i.e.,i=0.tionprobabilitycanbeformulatedasfollows:Equation(8)showsthattheelectricvehiclesbatterydvi(t)consumeselectricityenergyduetoitsresistance,so=αVsi(t)−vi(t)+λ1pi−1−vi(t)dtweshouldhereusetheparameterηetosubstitutetheparameterηmofEq.(8),wheretheparameterηeis+λ2(1−pi−1)vi(t),(7)thedrivingefficiencyoftheelectricvehiclesbatterywherepi−1istheprobabilitythattheprecedingvehi-andηe<ηm.Inaddition,Eq.(8)doesnotconsidercleoftheithvehicleisinterrupted,λ1,λ2aretwopa-theelectricityenergyconsumedbyotheraccessoriesrameters.Here,pi=0.2,λ1=0.5,λ2=0.2andother(e.g.,air-conditioner,electricpowersteering,etc.)andparametersarethesameasthoseofthemodel[15].theelectricityenergyconsumptionmayberelativelyHowever,theabovemodelscannotbeusedtostudyhighandaffecttheelectricvehiclesrunningdistance,theelectricvehicleselectricityenergyconsumption.soweshouldconsidertheeffectsoftheaccessoriesonToexploretheelectricvehicleselectricityenergycon-theelectricvehicleselectricityenergyconsumption.sumption,Mehrdad[19]proposedtheoutputpowerofThus,Eq.(8)canberewrittenasfollows:theelectricvehiclesbattery,i.e.,vdvρCDA2Ptotal=δm+mgf+vηteηedt2vdvρCDA2Pb-out=δm+mg(f+i)+v,+Paccessory,(10)ηteηmdt2(8)andEq.(9)canberewrittenasfollows: Electricvehiclesenergyconsumptionofcar-followingmodels325dvρCDA2Fig.1,weheredefinekasfollows[20]:Ptotal=kvηteηmδm+mgf+vdt20.5vv<5m/s+Paccessory,(11)k=5(12)(0.5+0.3v−5)v≥5m/s.20wherePtotalisthetotalpoweroftheelectricvehiclesOtherrelatedparametersvaluesareshowninTable1.battery.Infact,theparameterkisacomplexfunctionandrelatedtomanyfactors(e.g.,speed,acceleration,etc.),3SimulationsbutithasacloserelationshipwiththeregenerativebrakingforceasshowninFig.1[20].Thus,basedonBeforesimulation,wedefineEqs.(1),(4),(6),and(7),respectively,asModelA,ModelB,ModelCandModelD.First,weusethefourmodelstostudyeachTable1Thevaluesoftheelectricvehiclesrelatedparameterselectricvehicleselectricityenergyconsumptiondur-δ1.1ingthestartingandbrakingprocesses,wheretheini-m1500tialconditionsareasfollows:thereare11electricve-f0.015hiclesthatareuniformlydistributedonaroad,wherethefirstvehicleistheleadingoneandthe11thvehicleCD0.3liesattheoriginandtheother10vehiclesheadwaysA1.8are7.4m;thereisasignallightandabarrierontheρ1.2road,wherethesignallightislocatedat74mandtheηte0.85barrierislocatedat500m;allthevehiclesarestillηe0.85whent<0;thesignallightturnsgreenandalltheve-Paccessory1000hicleswillimmediatelystartatt=0;allthevehicleswilleventuallystopbecauseofthebarrier(seeFig.2).Basedontheabovediscussions,weobtaintheevo-lutionofthetotalelectricitypowerofeachvehiclesbatteryduringthestartingandbrakingprocesses(seeFig.3).Fromthisfigure,wehavethefollowing.(1)Theevolutionofthetotalelectricitypowerofeachvehiclesbatterycanbedividedintothreepromi-nentstagesduringthestartingprocess.Inthefirststage,theevolutionofthetotalelectricitypowerofeachvehiclesbatterysharplyincreases.Inthesecondstage,eachvehiclesspeedstillincreasesbutitstotalelectricitypowerbeginstodecrease.Inthethirdstage,theevolutionofthetotalelectricityFig.1ThedistributionofthebrakingforceinADVISOR[20]powerofeachvehiclesbatterydoesnotchange.Fig.2Thecar-followingschemeduringthestartingandbrakingprocesses 326S.Yangetal.Fig.4Thetotalelectricitypowerduringthestartingandbrak-ingprocessesthreemodels,thetotalelectricitypowerofeachvehiclesbatteryofModelBislargerthantheoneofModelCandthetotalelectricitypowerofeachvehiclesbatteryofModelCislargerthantheoneofModelD.Tofurtherdisplaythedifferencesoftheelectricvehicleselectricityenergyconsumptionsofthefourmodels,wecalculatethetotalelectricitypowerofthe11vehiclesduringthestartingandbrakingprocesses(seeFig.4).Fromthisfigure,weconcludetothefol-lowingresults.(1)ThetotalelectricitypowerofModelAquicklychanges,i.e.,itquicklyincreasesanddecreases,whichproducestheimpracticaltotalelectricityenergyconsumption.(2)ThetotalelectricitypowersofModelBandModelChaveatransientchange,butthereisnopromi-nentdifferencebetweenthetwomodels.(3)ThetotalelectricitypowerofModelDislessthanthatoftheotherthreemodelsatfirstbuthigherthantheotherthreemodelsatlast.Fig.3Theevolutionofeachelectricvehicleselectricitypower,where(a)(d)are,respectively,thatofModelATovalidatewhichmodelconsumesleastelectricityModelDenergyduringthestartingandbrakingprocesses,wecalculatethe11electricvehiclestotalelectricityen-(2)Duringthebrakingprocess,theevolutionoftheergyconsumptionofthefourmodelsfrom0to70stotalelectricitypowerofeachvehiclesbattery(seeTable2).Fromthistable,thetotalelectricityen-maybeirregularandverycomplex,theregener-ergyconsumptionofModelDislessthantheotherationmodeissimple.threemodels.(3)Inallcar-followingmodels,thetotalelectricityFinally,weexploreeachelectricvehicleselectric-powerofeachvehiclesbatteryduringthestartingitypowerwhenasmallperturbationoccursinatraf-processislargerthantheoneduringthebrakingficsystemwithperiodicboundarycondition.Here,theprocess.initialconditionsaresetasfollows:(4)Duringthestartingandbrakingprocesses,theto-x1(0)=1m;xi(0)=(i−1)L/i,talelectricitypowerofeachvehiclesbatteryofModelAismuchlargerthantheonesoftheotherifi=1;vi(0)=V(L/i),(13) Electricvehiclesenergyconsumptionofcar-followingmodels327Fig.5Theevolutionofeachelectricvehicleselectricitypowerafter3×105timestepsandtheprofileattimestep3×105,where(a)(d)are,respectively,thatofModelAModelDwhereN=100isthetotalnumberofvehicles,L=time(seeFig.5).Fromthisfigure,weobtainthefol-1500mistheroadslength.Here,therelatedparam-lowingresults.etersare,respectively,definedasthoseintheabovefourmodels.Thus,weobtaineachelectricvehicles(1)EachelectricvehicleselectricitypowerofModelelectricitypoweroftheabovefourmodelsafteralongDwillbeaconstantandeachelectricvehicles 328S.Yangetal.Table2Thetotalelectricityenergyconsumedinthewholesys-Table3Thetotalelectricityenergyconsumedinthewholesys-temduringthestartingandbrakingprocessestemduringtheperiodof2000timestepsafter3×105timestepsModelABCDModelABCDThetotalelectricity4.343.892.862.20Thetotal5.594.704.111.18energy(106J)electricityenergy(106J)electricityenergyconsumptionundertwotrafficsit-uations.ThenumericalresultsshowthattheelectricvehicleselectricityenergyconsumptionofModelDislowerthantheonesoftheotherthreemodels,whichshowsModelDcanreducetheelectricvehicleselec-tricityenergyconsumption.AcknowledgementsThisstudyhasbeensupportedbytheNationalNaturalScienceFoundationofChina(70971007andFig.6Totalelectricitypowerinthewholesystem71271016).electricityenergyconsumptionoftheotherthreemodelswillproduceoscillatingphenomena.References(2)EachelectricvehicleselectricitypowerofModel1.Chowdhury,D.,Santen,L.,Schreckenberg,A.:StatisticsDislowerthanthatoftheotherthreemodels.physicsofvehiculartrafficandsomerelatedsystems.Phys.(3)ThedriversshouldbetterkeeppatientwhentheyRep.329,199329(2000)meettrafficjams,orelsetheywillfrequentlystart2.Helbing,D.:Trafficandrelatedself-drivenmany-particleandbraketheirvehicles,whichwillmaketheelec-systems.Rev.Mod.Phys.73,10671141(2001)3.Li,Y.,Sun,D.,Liu,W.,Zhang,M.,Zhao,M.,Liao,X.,tricvehicleselectricitypowerincrease.Tang,L.:ModelingandsimulationformicroscopictrafficTodisplaythedifferencesofeachelectricvehicleflowbasedonmultipleheadway,velocityandaccelerationdifference.NonlinearDyn.66,1528(2011)electricityenergyconsumptionofthefourmodels,we4.Peng,G.H.,Nie,Y.F.,Cao,B.F.,Liu,C.Q.:Adriversmem-calculatetheevolutionofthetotalelectricitypowerorylatticemodeloftrafficflowanditsnumericalsimula-after3×105timestepsandthetotalelectricityenergytion.NonlinearDyn.67,18111815(2012)consumptionofthewholesystemduringtheperiodof5.Tang,T.Q.,Li,C.Y.,Huang,H.J.,Shang,H.Y.:Anewfun-5damentaldiagramtheorywiththeindividualdifferenceof2000timestepsafter3×10timesteps(seeFig.6andthedriversperceptionability.NonlinearDyn.67,2255Table3).FromFig.6andTable3,weconcludetothe2265(2012)followingresults.6.Ahn,K.:MicroscopicFuelConsumptionandEmissionModeling.CivilandEnvironmentalEngineering.Virginia(1)ThechangesofthetotalelectricitypowersofPolytechnicInstituteandStateUniversity,BlacksburgModelB,ModelCandModelDareveryslight,(1998)butthechangeofthetotalelectricitypowerof7.Ahn,K.,Rakha,H.,Trani,A.,Aerde,M.V.:Estimatingve-ModelAisrelativelyprominent(seeFig.6).hiclefuelconsumptionandemissionsbasedoninstanta-neousspeedandaccelerationlevels.J.Transp.Eng.128,(2)ThetotalelectricityenergyconsumptionofModel182190(2002)Dislessthanthatoftheotherthreemodels(see8.Rakha,H.,Ahn,K.,Moran,K.,Saerens,B.,Eric,V.B.:Vir-Fig.6andTable3).giniatechcomprehensivepower-basedfuelconsumptionmodel:modeldevelopmentandtesting.Transp.Res.,PartD,Transp.Environ.16,492503(2011)9.Wong,J.Y.:TheoryofGroundVehicles.Wiley,Chichester4Conclusions(2001)10.Wu,C.X.,Zhao,G.Z.,Ou,B.:AfueleconomyoptimizationsystemwithapplicationsinvehicleswithhumandriversInthispaper,weexploretherelationshipbetweenandautonomousvehicles.Transp.Res.,PartD,Transp.En-fourcar-followingmodelsandtheelectricvehiclesviron.16,515524(2011) Electricvehiclesenergyconsumptionofcar-followingmodels32911.Rakha,H.,VanAerde,M.,Ahn,K.,Trani,A.:Require-16.Zhao,X.M.,Gao,Z.Y.:Anewcar-followingmodel:fullmentsforevaluatingtrafficsignalcontrolimpactsonen-velocityandaccelerationdifferencemodel.Eur.Phys.J.Bergyandemissionsbasedoninstantaneousspeedandac-47,145150(2005)celerationmeasurements.Transp.Res.Rec.1738,566717.Tang,T.Q.,Huang,H.J.,Wong,S.C.,Jiang,R.:Anewcar-(2000)followingmodelwithconsiderationofthetrafficinterrup-tionprobability.Chin.Phys.B18,975983(2009)12.Schrank,D.,Lomax,T.:The2005UrbanMobilityReport.18.Helbing,D.,Tilch,B.:GeneralizedforcemodeloftrafficTexasTransportationInstitute,CollegeStation(2005)flow.Phys.Rev.E58,133138(1998)13.Yu,Z.S.:AutomobileTheory,4thedn.ChinaMachine19.Mehrdad,E.,Gao,Y.M.,Sebastien,E.G.,Ali,E.:Mod-Press,Beijing(2006)(inChinese)ernElectric,HybridElectric,andFuelCellVehicles:Fun-damentals,Theory,andDesign.CRCPress,BocaRaton14.Bando,M.,Hasebe,K.,Nakayama,A.,Shibata,A.,(2005)Sugiyama,Y.:Dynamicalmodeloftrafficcongestionand20.Zhou,M.L.,Gao,Z.M.,Zhang,H.:Researchonregener-numericalsimulation.Phys.Rev.E51,10351042(1995)ativebrakingcontrolstrategyofhybridelectricvehicle.15.Jiang,R.,Wu,Q.S.,Zhu,Z.J.:FullvelocitydifferenceIn:The6thInternationalFormonStrategicTechnology,modelforacar-followingtheory.Phys.Rev.E64,017101Harbin,China(2011)(2001)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭