乙醇制氢催化剂研究.doc

乙醇制氢催化剂研究.doc

ID:55926271

大小:1.36 MB

页数:10页

时间:2020-06-15

乙醇制氢催化剂研究.doc_第1页
乙醇制氢催化剂研究.doc_第2页
乙醇制氢催化剂研究.doc_第3页
乙醇制氢催化剂研究.doc_第4页
乙醇制氢催化剂研究.doc_第5页
乙醇制氢催化剂研究.doc_第6页
乙醇制氢催化剂研究.doc_第7页
乙醇制氢催化剂研究.doc_第8页
乙醇制氢催化剂研究.doc_第9页
乙醇制氢催化剂研究.doc_第10页
资源描述:

《乙醇制氢催化剂研究.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、目录第一章研究背景3第二章文献综述42.1乙醇水蒸气重整制氢机理42.2乙醇水蒸气重整制氢催化剂52.2.1贵金属催化剂62.2.2非贵金属催化剂72.3文献总结10参考文献11第一章研究背景氢气作为一种绿色可再生“无碳”能源,受到了越来越多研究者的重视,氢能的制取与应用已成为当前的研究热点。但目前氢气的来源依旧无法摆脱传统化石能源的依赖,大部分氢气来源于煤、石油、天然气等不可再生能源,就产业而言,无法真正实现“可再生”这一概念。进入21世纪,可再生生物制氢技术逐渐受到诸多研究者的关注,甚至有研究者语言未来氢能的主要来源是可再生生物质。生物

2、质制氢技术包括生物质气化、热解、超临界转化等常规热化学制氢技术和蒸汽重整、水相重整、自热重整、光催化重整等技术[1]。两类技术相较而言,蒸汽重整技术更适合大规模集中制氢,且其转化率和产氢率较高,获得了较多的关注。而在生物质中,乙醇因其来源广泛、制取较为容易而成为生物质制氢的一个重要原材料,而且相对于化石燃料和其他生物质而言,其具有无毒、易储运、单位密度能量高、来源广泛、含氢量较高等优点。对于乙醇制氢,目前存在有乙醇水蒸气重整制氢、乙醇自然氧化制氢、乙醇氧化重整制氢等研究方法。第二章文献综述2.1乙醇水蒸气重整制氢机理乙醇水蒸气重整制氢作为乙

3、醇制氢的一个重要途径,受到较多的关注。然而,乙醇水蒸气重整制氢反应体系较为复杂,副反应较多,就其机理而言,目前一般认为存在以下两种机理[1,2],如图2.1所示:图2.1乙醇水蒸气重整制氢的反应机理(1)脱氢机理:乙醇脱氢生产乙醛和氢气,部分乙醛会继续与表面的氧作用生成乙酸盐形式,然后分解形成甲烷和二氧化碳;部分乙醛亦会直接裂解生成甲烷和一氧化碳。一氧化碳发生水气变换反应生成二氧化碳和氢气,甲烷发生水蒸气重整反应生成一氧化碳、二氧化碳和氢气。当然也有部分一氧化碳在表面富氧的条件下直接氧化生成二氧化碳。一般而言,乙醇在碱性催化剂活性位点上容易

4、发生脱氢反应生成乙醛,生成的乙醛可以进一步发生水蒸气重整反应,或裂解成甲烷和一氧化碳,也可能发生脱羰基生成丙酮。(2)脱水机理:乙醇脱水生成乙烯和氢气。脱水产物乙烯,部分快速发生重整反应,生成一氧化碳和氢气;部分直接脱附,存在于产物中。一氧化碳发生水气变换反应生成二氧化碳和氢气。乙醇在酸性催化剂上容易发生脱水反应,但生成的乙烯容易发生聚合反应,形成积碳。乙醇水蒸气重整制氢反应体系中各反应在不同温度下的平衡常数如表2.1所示。从表2.1中可以看出主反应的平衡常数随着温度的升高而增加,即高温有利于主反应的进行,也有利于减少副产物的生成[3]。一

5、般而言,乙醇重整制氢的最佳反应温度在850K-900K之间。杨宇等研究了压力大小对乙醇水蒸气重整制氢效果的影响,发现减少系统压力有利于乙醇和水的转化,使氢气的产率提高,因此反应通常在常压或者负压条件下进行[4]。此外,水醇比越高越有利于重整反应的进行,且可以减少催化剂的积碳现象,但过高的水醇比提高了其操作费用,不利于工业化,一般水醇比在8-9之间较为合适。表2.1不同温度下乙醇水蒸气重整制氢系统反应的平衡常数2.2乙醇水蒸气重整制氢催化剂由2.1节对乙醇水蒸气重整制氢的机理介绍中可以看出,乙醇重整制氢的关键技术是催化剂的选择。不同催化剂具有

6、不同的酸碱性,物理化学性质迥异,会影响其反应路径,进而影响产物分布,影响氢气选择性和氢气产率。目前乙醇重整制氢所用活性组分主要可分为Cu、Ni、Zn等非贵金属催化剂,Pt、Rh、Pd等贵金属催化剂及其他催化剂[5]。但出于催化剂成本考虑,催化剂选材逐渐由贵金属催化剂向Ni、Cu、Zn等非贵金属材料转移。2.2.1贵金属催化剂对贵金属催化剂在乙醇水蒸气重整制氢中应用的研究主要集中在以Al2O3、MgO、CeO2、ZnO、ZrO2等单一金属氧化物和复合氧化物为载体的负载型Pt、Pd、Rh、Ru催化剂上,其中以Rh基催化剂的报道为主。F.Frus

7、teri等[7]研究了MgO负载3%Pd、Rh等贵金属和20%Co、Ni等非贵金属催化剂的生物乙醇重整制氢的催化效果,如图2.2和图2.3所示。他们发现在操作温度为650℃时,Rh/MgO制氢的活性和稳定性最优,但其氢气选择性略低于Ni/MgO催化剂(>95%)。其分析认为Rh具有较好的抗积碳和抗烧结性能。一般而言,在乙醇水蒸气重整制氢反应体系中,引起催化剂失活的原因有烧结和积碳两种,而MgO是碱性载体,其积碳速率很低,所以在Rh/Mg催化剂上烧结是主要的失活因素。图2.2不同催化剂下乙醇转化率随时间的变化关系(反应温度为650℃)图2.3

8、不同催化剂下氢气选择性随时间的变化(反应温度为650℃,Ni/MgO,Rh/MgO,Rh/MgO,Pd/MgOLiguras等[8]研究了在反应温度为600-850℃下,不同载体

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。