专题椭圆中地定点定值问题.doc

专题椭圆中地定点定值问题.doc

ID:57706372

大小:2.04 MB

页数:9页

时间:2020-09-01

专题椭圆中地定点定值问题.doc_第1页
专题椭圆中地定点定值问题.doc_第2页
专题椭圆中地定点定值问题.doc_第3页
专题椭圆中地定点定值问题.doc_第4页
专题椭圆中地定点定值问题.doc_第5页
资源描述:

《专题椭圆中地定点定值问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、椭圆中的定点定值问题1.已知椭圆C:()的右焦点为F(1,0),且(,)在椭圆C上。(1)求椭圆的标准方程;(2)已知动直线l过点F,且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由。解:(1)由题意知c=1.由椭圆定义得,即--3分∴,椭圆C方程为.(2)假设在x轴上存在点Q(m,0),使得恒成立。当直线l的斜率不存在时,A(1,),B(1,),由于()·()=,所以,下面证明时,恒成立。当直线l的斜率为0时,A(,0)B(,0)则(,0)(,0)=,符合题意。当直线l的斜率不为0时,设直线l的方程为x=ty+1,A,

2、B,由x=ty+1及得有∴;,∴==,综上所述:在x轴上存在点Q(,0)使得恒成立。2.如图,中心在坐标原点,焦点分别在轴和轴上的椭圆,都过点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点引两条斜率分别为的直线分别交,于点P,Q,当时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(Ⅰ);(Ⅱ)直线MP的方程为,联立椭圆方程得:,消去y得,则,则点P的坐标为,同理可得点Q的坐标为:,又,则点Q为:,,则直线PQ的方程为:,即,化简得,即当时,,故直线PQ过定点.3.已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C

3、的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.解:(1)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(2)设直线AE方程为:,代入得,设E(xE,yE),F(xF,yF),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,在上式中以﹣K代K,可得,所以直线EF的斜率,即直线EF的斜率为定值,其值为.4.已知椭圆E:+=1(a>b>0)经过点(0,),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过左焦点F任作一直线l,交椭圆E于

4、P、Q两点.(i)求•的取值范围;(ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM于点N,证明:点N在一条定直线上.解:(Ⅰ)由题意可得b=,e==,又a2﹣b2=c2,解得a=,c=2,即有椭圆方程为+=1;(Ⅱ)(i)F(﹣2,0),当直线的斜率不存在时,设P(x1,y1),Q(x2,y2),直线方程为x=﹣2,可得P(﹣2,),Q(﹣2,﹣),•=4﹣=;当直线的斜率存在,设l:y=k(x+2),设P(x1,y1),Q(x2,y2),代入椭圆方程x2+3y2=6,可得(1+3k2)x2+12k2x+12k2﹣6=0,x1+x2=﹣,x1x2

5、=,•=x1x2+y1y2=x1x2+k2(x1+2)(x2+2)=(1+k2)x1x2+2k2(x1+x2)+4k2=(1+k2)•+2k2•(﹣)+4k2==﹣,由k2≥0,3k2+1≥1,可得﹣6≤•<,综上可得,•的取值范围是[﹣6,];(ii)证明:由直线l的斜率一定存在,且不为0,可设PQ:y=k(x+2),FN:y=﹣(x+2),设M(x0,y0),则x0=,由x1+x2=﹣,可得x0=,y0=k(x0+2)=,直线OM的斜率为kOM==﹣,直线OM:y=﹣x,由得,即有k取何值,N的横坐标均为﹣3,则点N在一条定直线x=﹣3上.5.椭圆C:+=1(a>b>0).(

6、1)若椭圆C过点(﹣3,0)和(2,).①求椭圆C的方程;②若过椭圆C的下顶点D点作两条互相垂直的直线分别与椭圆C相交于点P,M,求证:直线PM经过一定点;(2)若椭圆C过点(1,2),求椭圆C的中心到右准线的距离的最小值.解:(1)①∵椭圆C:+=1(a>b>0)过点(﹣3,0)和(2,),∴,解得a=3,b=1,∴椭圆C的方程.证明:②由题意得PD、MD的斜率存在且不为0,设直线PD的斜率为k,则PD:y=kx﹣1,由,得P(,),用﹣代k,得M(,),∴=,∴直线PM:y﹣=,即y=,∴直线PM经过定点T(0,).解:(2)椭圆C的中心到右准线的距离d=,由=1,得,∴==

7、,令t=a2﹣5,t>0,则=t++9≥2+9=4+9,当且仅当t=2,时,等号成立,∴椭圆C的中心到右准线的距离的最小值为.6.已知椭圆的右焦点到直线的距离为,离心率,是椭圆上的两动点,动点满足,(其中为常数).(1)求椭圆标准方程;(2)当且直线与斜率均存在时,求的最小值;(3)若是线段的中点,且,问是否存在常数和平面内两定点,使得动点满足,若存在,求出的值和定点;若不存在,请说明理由.解:(1)由题设可知:右焦点到直线的距离为:,又,,∴.∴椭圆标准方程为.(2)设则由得.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。