第2章-递归与分治策略ppt课件.ppt

第2章-递归与分治策略ppt课件.ppt

ID:59019156

大小:250.00 KB

页数:37页

时间:2020-09-26

上传者:U-5649
第2章-递归与分治策略ppt课件.ppt_第1页
第2章-递归与分治策略ppt课件.ppt_第2页
第2章-递归与分治策略ppt课件.ppt_第3页
第2章-递归与分治策略ppt课件.ppt_第4页
第2章-递归与分治策略ppt课件.ppt_第5页
资源描述:

《第2章-递归与分治策略ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

第2章递归与分治策略1 课程安排12345678910111213141516周二PPTTPTTPTTPTTTTP周四PPPPPPPPPPPPPP端午考试T2 学习要点:理解递归的概念。掌握设计有效算法的分治策略。通过下面的范例学习分治策略设计技巧。2.1递归的概念2.2分治法的基本思想2.3二分搜索技术2.4大整数的乘法2.5Strassen矩阵乘法2.6棋盘覆盖2.7合并排序2.8快速排序2.9线性时间选择2.10最接近点对问题2.11循环赛日程表3 将要求解的较大规模的问题分割成k个更小规模的子问题。对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。算法总体思想4 算法总体思想将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。5 2.1递归的概念直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。6 2.1递归的概念例1阶乘函数阶乘函数可递归地定义为:边界条件递归方程边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。7 2.1递归的概念例2Fibonacci数列无穷数列1,1,2,3,5,8,13,21,34,55,……,称为Fibonacci数列。它可以递归地定义为:边界条件递归方程第n个Fibonacci数可递归地计算如下:intfibonacci(intn){if(n<=1)return1;returnfibonacci(n-1)+fibonacci(n-2);}8 2.1递归的概念前2例中的函数都可以找到相应的非递归方式定义:本例中的Ackerman函数却无法找到非递归的定义。9 2.1递归的概念例3Ackerman函数当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。Ackerman函数A(n,m)定义如下:10 2.1递归的概念例3Ackerman函数A(n,m)的自变量m的每一个值都定义了一个单变量函数:M=0时,A(n,0)=n+2M=1时,A(n,1)=A(A(n-1,1),0)=A(n-1,1)+2,和A(1,1)=2故A(n,1)=2*nM=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)=2^n。M=3时,类似的可以推出M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子来表示这一函数。11 2.1递归的概念例4排列问题设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。集合X中元素的全排列记为perm(X)。(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),…,(rn)perm(Rn)构成。12 2.1递归的概念C++标准函数13 2.1递归的概念例5整数划分问题将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,其中n1≥n2≥…≥nk≥1,k≥1。正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。例如正整数6有如下11种不同的划分:6;5+1;4+2,4+1+1;3+3,3+2+1,3+1+1+1;2+2+2,2+2+1+1,2+1+1+1+1;1+1+1+1+1+1。14 (2)q(n,m)=q(n,n),mn;最大加数n1实际上不能大于n。因此,q(1,m)=1。(1)q(n,1)=1,n1;当最大加数n1不大于1时,任何正整数n只有一种划分形式,即2.1递归的概念例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。15 (4)q(n,m)=q(n,m-1)+q(n-m,m),n>m>1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1≤m-1的划分组成。(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1≤n-1的划分组成。2.1递归的概念例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。16 2.1递归的概念例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。正整数n的划分数p(n)=q(n,n)。17 递归小结优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。18 解决方法:在递归算法中消除递归调用,使其转化为非递归算法。采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。用递推来实现递归函数。通过变换能将一些递归转化为尾递归,从而迭代求出结果。后两种方法在时空复杂度上均有较大改善,但其适用范围有限。递归小结19 分治法的适用条件分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质利用该问题分解出的子问题的解可以合并为该问题的解;该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划。这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。20 divide-and-conquer(P){if(|P|<=n0)adhoc(P);//解决小规模的问题dividePintosmallersubinstancesP1,P2,...,Pk;//分解问题for(i=1,i<=k,i++)yi=divide-and-conquer(Pi);//递归的解各子问题returnmerge(y1,...,yk);//将各子问题的解合并为原问题的解}分治法的基本步骤人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。21 分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件二分搜索技术给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x。分析:该问题的规模缩小到一定的程度就可以容易地解决;22 比较x和a的中间元素a[mid],若x=a[mid],则x在L中的位置就是mid;如果xa[i],同理我们只要在a[mid]的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。二分搜索技术给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x。分析:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;23 分析:很显然此问题分解出的子问题相互独立,即在a[i]的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。二分搜索技术给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x。分析:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立的。24 二分搜索技术给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x。二分搜索算法:templateintBinarySearch(Typea[],constType&x,intleft,intright){while(right>=left){intm=(left+right)/2;if(x==a[m])returnm;if(x0时,将2k×2k棋盘分割为4个2k-1×2k-1子棋盘(a)。特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘1×1。31 棋盘覆盖voidchessBoard(inttr,inttc,intdr,intdc,intsize){if(size==1)return;intt=tile++,//L型骨牌号s=size/2;//分割棋盘//覆盖左上角子棋盘if(dr=tc+s)//特殊方格在此棋盘中chessBoard(tr,tc+s,dr,dc,s);else{//此棋盘中无特殊方格//用t号L型骨牌覆盖左下角board[tr+s-1][tc+s]=t;//覆盖其余方格chessBoard(tr,tc+s,tr+s-1,tc+s,s);}//覆盖左下角子棋盘if(dr>=tr+s&&dc=tr+s&&dc>=tc+s)//特殊方格在此棋盘中chessBoard(tr+s,tc+s,dr,dc,s);else{//用t号L型骨牌覆盖左上角board[tr+s][tc+s]=t;//覆盖其余方格chessBoard(tr+s,tc+s,tr+s,tc+s,s);}}复杂度分析T(n)=O(4k)渐进意义下的最优算法32 合并排序算法mergeSort的递归过程可以消去。初始序列[49][38][65][97][76][13][27][3849][6597][1376][27]第一步第二步[38496597][132776]第三步[13273849657697]33 合并排序基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。voidMergeSort(Typea[],intleft,intright){if(left

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭