(已用)重型载货车乘坐舒适性与稳定性评估.doc

(已用)重型载货车乘坐舒适性与稳定性评估.doc

ID:59265676

大小:1.53 MB

页数:11页

时间:2020-09-08

(已用)重型载货车乘坐舒适性与稳定性评估.doc_第1页
(已用)重型载货车乘坐舒适性与稳定性评估.doc_第2页
(已用)重型载货车乘坐舒适性与稳定性评估.doc_第3页
(已用)重型载货车乘坐舒适性与稳定性评估.doc_第4页
(已用)重型载货车乘坐舒适性与稳定性评估.doc_第5页
资源描述:

《(已用)重型载货车乘坐舒适性与稳定性评估.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、重型载货车乘坐舒适性与稳定性评估前言汽车舒适性与稳定性是汽车主观评估方面的两个最重要的因素。在传统悬架系统设计中,乘坐舒适性与汽车稳定性之间有个制衡关系。汽车的驾乘舒适性指的是影响乘员舒适或不舒适感知的振动。汽车驾乘舒适性分析被用于悬架设计,以确保乘员不舒适感不超过某一程度。在传统悬架系统中,有两个确定悬架性能的基本元件,这两个元件是弹簧和减振器。弹簧在汽车悬架系统的作用是储存能量和支撑汽车的静态重量;减振器在汽车悬架系统的作用是消除振动能量,控制传输给汽车的道路输入。业界已经进行了很多以改善汽车驾乘动态和操控性为最终目标的

2、研究,如有关被动悬架、半主动、主动悬架的研究工作。某些研究主要关注悬架设计,如有关机构研究了麦弗逊滑柱式悬架的运动学特性,麦弗逊滑柱式悬架常用于小型/中型轿车。有机构应用ADAMS多车身动态模拟环境将汽车前悬架作为独立装置模拟。这一模型承受悬架压缩与复原之间全程的纵向运动。这一分析的输出提供主要几何量,例如车轮外倾角、主销纵倾角、主销倾角和转向角的变化、汽车轨迹改变,以及侧倾中心高度偏移和换算到车轮处的悬架刚度。业界在定义乘坐舒适性限值方面也进行了许多研究,这些研究包括振动试验和乘坐模拟试验。这些方法尝试建立试验对象对舒适区

3、和不舒适区的反应,以及振动参数(如位移、速度、加速度)之间的联系。汽车具有良好的驾乘性,人体的自然频率为1Hz。汽车在给定道路上以恒定速度行驶时,汽车驾乘性评估通过对加速度频谱的研究就能达成。推荐的驾乘性均方根是平稳驾乘性为0~0.04g,中等驾乘性为0.04g~0.06g,差等驾乘性为0.06g以上。一般情况下,驾乘舒适性好的汽车的悬架系统纵向刚度相对低,但纵向刚度低会损失操控特性,良好操控特性要求悬架系统的纵向刚度高。为解决这一相互制衡的关系,汽车业推出了独立悬架、可调系统和主动元件。因此,设计阶段使用计算机模拟悬架特性

4、有助于悬架系统优化。因此,本文给出了利用多车身动态软件包ADAMS开发的重型载货车模型。进行了充气式单管减振器软/硬模式的试验,以研究各种速度下,它对汽车乘坐舒适性和稳定性的影响。图1重型载货车模型1整车模型图1中给出的重型载货车模型有6个自由度:车身跳动与俯仰和4个簧下质量跳动。该载货车模型包括7个部分(不包括地面、载货车车身、4个车轮、前桥、后桥和4个道路激励装置)。汽车车身代表簧上质量,其重要特征是惯性(重心、质量和惯性部件)。试验中经常用到这些部件。簧下质量包括一套子系统、前桥和后桥、4个车轮。该模型还包括前后悬架和

5、道路状况。在这一模型中,载货车是静止的,道路是移动的。利用4个不规则的鼓轮,将垂直运动传递给模型,如图1(b)所示,通过4个旋转连接,这些鼓轮与地面相连接。旋转运动应用给每个连接以转动鼓轮进行一系列垂直运动,这相当于车轮在完全压缩和完全回弹位置之间移动。图2道路输入情况2道路输入用4个不规则的鼓轮激起道路输入,生成道路概况,模拟光滑路面或粗糙路面(100mm跳动),如图2所示。汽车速度计算要么应用给伞齿轮速度和半径,要么应用给两轴之间的轴距和时间滞后(参见附录)。3减振器试验充气单管减振器的动态特性在两种模式之间转换,利用图

6、3中所示的MTS850减振器测试系统,利用试验研究了软、硬两种模式。试验输入是正弦位移,频率为2Hz,振幅为80mm。两种模式(软/硬)时,减振力随速度的变化见图4。这些试验结果如图4(c)所示,并利用ADAMS中的“仿样”命令语句将之输入车辆模型,以研究减振器特性对车辆驾乘性和稳定性的影响。4整车模型模拟研究图1中给出的重型载货车模型在不同速度下(112km/k、58km/h、28km/h)持续模拟5S和5000步,试验道路概况如图2所示。动态分析提供模型中所有位移、速度、加速度、中间反应力以及俯仰角随时间变化的情况。表1

7、给出了模拟中使用的汽车参数。其中考虑了两种模式(软/硬)适用的试验减振器特性。表1汽车参数弹簧质量12000kg前部簧下质量900kg后部簧下质量1000kg前悬架刚度25kN/m后悬架刚度40kN/m前、后轮胎刚度170kN/m前、后轮胎阻尼0.7kN.s/m图4减振力随速度的变化情况5结果当汽车以112km/h速度在光滑平路上行驶时(见图2(a)),单管减振器两种模式汽车位移、加速度随时间的变化如图5(a)和5(b)所示。汽车速度为56km/h时,汽车位移与加速度随时间的变化见图6(a)和6(b)。在图5(b)中,使用硬

8、模式,车身最大加速度的绝对值为2161.2mm/s2,加速度的均方根为472.3;利用软模式,车身最大加速度为552.4mm/s2,均方根为209.4。在图6(e)中,利用减振器的硬模式,车身最大加速度为1216mm/s2,加速度的均方根为260.4;同时利用软模式,车身最大加速度为504

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。