Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -

Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -

ID:81816800

大小:7.19 MB

页数:9页

时间:2023-07-21

上传者:U-14522
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第1页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第2页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第3页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第4页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第5页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第6页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第7页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第8页
Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -_第9页
资源描述:

《Interactions of an Anionic Antimicrobial Peptide with Zinc ( II ) Application to Bacterial Mimetic Membranes - Almarwani et al. - 2020 -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleInteractionsofanAnionicAntimicrobialPeptidewithZinc(II):ApplicationtoBacterialMimeticMembranesBashiyarAlmarwani,NsokiPhambu,*YahiaZ.Hamada,andAndersonSunda-Meya*CiteThis:Langmuir2020,36,14554−14562ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Whilethemajorityofknownantimicrobialpeptidesarecationic,asmallnumberconsistofshortAsp-richsequencesthatareanionic.Theserequiremetalionstobecomebiologicallyactive.Here,wereportthestudyofthezinccomplexesofthepeptideGADDDDD(GAD5),anantimicrobialpeptide.Usingacombinationofdynamiclightscattering(DLS),ζ-potential,infrared,Raman,thermogravimetricanalysis(TGA),differentialscanningcalorimetry(DSC),andscanningelectronmicroscopy(SEM),wefindthataddingzincionstoGAD5forcesitintoacompactstructure.Higheramountsofzincionsfavoralargerstructure,possiblyadimer.SEMimagesshowthatzincionsreducethesizeofthefibrillarstructuresofGAD5.TGAcurvesshowthattheadditionofzincionsincreasesthethermalstabilityofthestructureofthepeptide.TGAandDSCindicatethattheassociationofGAD5withazwitterionicphospholipidinthepresenceofzincionsisthemoststable.Thestabilityofthatcomplexisduetothepresenceofasharpendothermicpeakinthe200−300°Crange,suggestingthepresenceofinterlamellarwaterthatisessentialtothestabilizationofthestructure.TheseresultsindicatethattheZn−GAD5complexprefersthebacteria-mimickingneutral(zwitterionic)membranes.Inthepresenceofnegativelychargedphospholipids,thecomplexremainsunorderedandunstable.Intermsofmechanismofaction,theZn−GAD5complexpromotesapossibleendocyticuptakewithrespecttoneutral(zwitterionic)membraneswhilepromotingmembranedisruptionbyformingporeswithrespecttonegativelychargedphospholipids.1.INTRODUCTIONtechniquessuchasdynamiclightscattering(DLS),ζ-potential,Mostantimicrobialpeptidesarecationic.1VeryfewstudiesRaman,thermogravimetricanalysis(TGA),differentialscan-havebeendevotedtoanionicantimicrobialpeptides.2−6ningcalorimetry(DSC),andscanningelectronmicroscopyAnionicantibacterialpeptides(AAPs)werefirstisolated(SEM)couldyieldmoredetailedinformationtounderstandfromepithelialcellsandpulmonarysecretions.3,6−8Thesethekillingmechanismofanionicantimicrobialpeptides.Tomoleculeshavebeenfoundtopreventbacterialgrowthintheunderstandthemembranedisruptionmechanismforzinc-presenceofdivalentmetalions.5,6Brogdenetal.3haveshownboundGAD5,theinteractionofthezinc−peptidecomplexDownloadedviaHELMHOLTZ-ZENTRUMHEREONonMay14,2021at15:08:47(UTC).thatthesesmallpeptides(lessthan1kDinsize)inhibitthewithmodelmembraneswasinvestigated.BacterialmembranesgrowthofbothGram-negativeandGram-positivebacteriainarehighlyanionicinnature,whereasouterleafletsofSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.9−120.14MNaClwith2.5μMZnCl2.Antimicrobialactivityresideseukaryoticmembranestendtobeneutral.Therefore,inthecoreAsphexapeptidehomopolymericregion,andzwitterionicdipalmitoylphosphocholine(DPPC)andanionicgrowthinhibitionincreaseswiththenumberofAspresiduesinpalmitoyloleoylphosphoglycerol(POPG)lipidswerechosenas3,6thepeptide.Theyrequirezincformaximalactivityandformmodelsfor,respectively,eukaryoticandbacterialmembranes3acomplexwithit.Itwasspeculatedthatzincmayformatoelucidatetheeffectofelectrostaticinteractionsonthecationicsaltbridgethatallowsthepeptidetoovercomethenetactivityandspecificityofzinc−GAD5.DPPCisthemain3,6−8negativechargeonthemicrobialsurface.However,thecomponentofthemembranemodelofthepulmonarymechanismsunderlyingtheantimicrobialactionofthesesurfactant.10,13POPGhasbeenusedasapotentialmodelforanionicpeptidesremainunclearorhasnotbeendefinitivelyGram-positivebacteriasuchasStaphylococcusaureus.11,12,14,153,6−8elucidated.Aquestionthatbegstobeansweredis:whatisthenatureofthecomplexesformedbythepeptideandzincmetalionattheconcentrationof0.5mMGAD5in20μMReceived:August5,2020ZnClusedbyBrogdenetal.?3Thecalculatedzinc/peptideRevised:November11,20202molarratiois0.04,whichisnonstoichiometric.ThenatureofPublished:November23,2020thecomplexbetweenGAD5andzincionsintheirworkconditionsisfullycharacterizedhereusingthetraditionalspectrummethodssuchasinfrared.However,resultsfrom©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c0230614554Langmuir2020,36,14554−14562

1Langmuirpubs.acs.org/LangmuirArticleFigure1.AminoacidsequenceoftheanionicantimicrobialpeptideGAD5atneutralpH.aTable1.AverageSizeandζ-PotentialDistributionsof10μMGAD5forDifferentConcentrationsofZnCl2Zn−GAD5molarhydrodynamicradius(peak#1)percenthydrodynamicradius(peak#2)percentζ-potentialsampleratio(nm)(%)(nm)(%)(mV)GAD5freepeptide164764124−13.4Zn−GAD50.0184100−12.3Zn−GAD50.0447100−12.8Zn−GAD50.0531100−12.9Zn−GAD50.0874100−11.1Zn−GAD50.192100−9.9Zn−GAD50.2111100−9.3Zn−GAD50.5105100−9.4Zn−GAD5116195195−1.2Zn−GAD521481000.7Zn−GAD551531001.4aAnerrorof4%wasobtainedfromthreeindependentmeasurements.2.EXPERIMENTALSECTIONappropriateamountof10μMGAD5inavolumetricflaskanddilutingtothemarkwithwateratpH6.7.Asuitabledilutionofthese2.1.Materials.DPPCandPOPGwerepurchasedfromAvantistocksolutionsdownto10μMallowedonetotitrateGAD5withPolarLipidInc.andusedwithoutfurtherpurification.Thepeptideincreasingamountsofzincions.Thecalculatedmolarratiosofzinc−GAD5(GADDDDD-OH)wasobtainedfromGenScript(>97%peptidesystemsare0.01,0.02,0.05,0.1,5,10,50,and100.purity)andusedasreceived.ZnCl2wasobtainedfromFisherandζ-Potentialstudiesforsurfacechargemeasurementswerecarriedusedasreceived.Ourworkconditionsaredifferentfromthose3outusingthesamemachineasthatusedforparticlesize.AtotalofreportedbyBrogdenetal.whousedmillimolarconcentrations,threemeasurementsof100runseachwerecarriedoutforallofthewhereasthisstudyusedmicromolarconcentrationsofthezincsaltsamples.Next,eachpreparationwastransferredtoadisposablethataremorerelevanttothebiologicalenvironments.Figure1cuvetteforsizeevaluationand,afterward,toaDTS1060cell(MalvernpresentstheaminoacidsequenceofthepeptideGAD5atneutralpH.22−24Instruments)forζ-potentialmeasurement.2.2.PreparationofCellMembraneMimeticVesicles.2.4.RamanSpectroscopy.RamanspectrawererecordedusingaPreparationofcellmembranemimeticvesicleshasbeenextensively13,15−19confocalmicroscopeRamanspectrometer(DXRRamanmicroscopedescribedinourpreviousreports.NeutralvesicleswerefromThermoScientific)equippedwithOMNICsoftware.ThepreparedusingpureDPPC,andnegativelychargedvesicleswereexcitationwavelengthwas532nm,andthespectralcoveragerangepreparedusingpurePOPG.Theappropriateamountofdriedlipidwas4000−400cm−1withaspectralresolutionof2cm−1.Theoutputwasweighedoutanddissolvedinchloroformandvortexedfor5min.powerwas8mW.TheRamanspectrumwasbaseline-corrected,andThesamplewasdriedunderastreamofnitrogengasfor6hand12,25−31undervacuumovernight.AthinlipidfilmwasformedonthewalloftheRamanintensitiesweremeasuredaspeakheight.thevial.ThethinlipidfilmwasthenhydratedwithwateratpH6.7to2.5.InfraredSpectroscopy.Infraredspectrawereobtainedusingatotallipidconcentrationof5mg/mL.SmallunilamellarvesiclesaFouriertransforminstrument(ThermoScientificiS10)equipped(SUVs)werepreparedbysonificationofthemilkylipidsuspensionwithasinglereflectionGeattenuatedtotalreflectanceaccessory.SolidusingaSonicDismembratorUltrasonicProcessor(modelFB-50sampleswereused.ThechangeinvibrationmodesofGAD5withandincludingastandard1/8″diametermicrotip,intitaniumalloy)fromwithoutzincionsand/orthelipidmixturewasmonitored.TheFisherScientificforaboutanhourinanicebathuntilthesolutionspectrawererecordedatroomtemperaturebetween4000and600cm−1ata4cm−1resolution,and64scanswereaccumulated.Routinebecametransparent.Forpeptidebindingexperiments,anappropriatevolumeof10μMGAD5wasmixedwitheitherDPPCorPOPGinsmoothingandnormalizationwereappliedtoalloftheinfrared28,32−34chloroformtomakeupthedifferentsolutionswithdifferentspectra.proportionsofmembranevesicles.17−19AvacuumapparatusFreeDeterminationofthesecondarystructure.ThedeterminationofZone6fromLABCONCOwasusedtoobtainthefreeze-driedthesecondarystructurefrominfraredspectrausingtheamideI17−19samplesusedforinfrared,Raman,TGA,DSC,andSEMtechniques.vibrationhasbeenextensivelydescribedinourpreviousreports.2.3.ParticleSizeandζ-PotentialMeasurements.ThesizeThedeconvolutionoftheamideIbandwasperformedwithOMNICanddistributionofaggregatesinsolutionweremeasuredbydynamicsoftware(ThermoFisherScientific,Waltham,MA)andanalyzedasalightscatteringusingaZetasizerNanoSeries(Nano-ZS)instrumentsumofGaussiancurves,withconsecutiveoptimizationofamplitudes,20−22bandpositions,half-widths,andGaussiancompositionofindividual(MalvernInstruments,Malvern,U.K.)anda633nmlaserdiode.Allmeasurementswereconductedatascatteringangleof90°.Allbands.Thetypesofsecondarystructureswereassignedbasedonthe35−37sampleswerefiltered,degassed,andscannedusinga1cmpathlengthdatafoundintheliterature.ThecharacteristicamideIpeakquartzcuvette.Thesampleswerelefttoequilibratefor3minat25describedintheliteraturecontainsdifferentsecondarystructures,includingstrongintermolecularβ-sheet(1622−1627cm−1),strong°C.ThedatawerefittedusingMalvernInstrumentDTSsoftware.intramolecularβ-sheet(1628−1638cm−1),weakβ-sheet(1690−TheDLStitrationofvesicleswithGAD5wasperformedasfollows:stocksolutionsofvesiclesofGAD5werepreparedbydissolvingan1703cm−1),randomcoils(1640−1644cm−1),α-helix(1645−165714555https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

2Langmuirpubs.acs.org/LangmuirArticleaTable2.PercentageofSecondaryStructuresin10μMGAD5andItsZn−GAD5ComplexSamplesGAD5(%)Zn−GAD5(%)Zn−GAD5−DPPC(%)Zn−GAD5−POPG(%)a-helix6901000β-sheet31000β-turn022034randomcoil078066aAnerrorof2%wasobtainedfromthreeindependentruns.Figure2.SEMimagesoflyophilizedsamplesofGAD5(A)andZn−GAD5complex(B).cm−1),3-helix(1658−1666cm−1),andturns(1668−1685cm−1).10throughtheentiremolarratiorange.TheZn−GAD5complexTheconformationrangesabovearebasedontheexperimentaldataadoptsacompactstructureatamolarratioof0.05.andassignmentscollectedfromvariousauthorsandevaluatedbyourWhilemeasuringtheeffectofzincionsonparticlesize,the17−19,28,32−34team.surfacechargeofthesolutionswasalsomeasuredusingtheζ-2.6.ThermogravimetricAnalysis(TGA)andDifferential38potentialtechnique.AsexpectedfortheanionicpeptideScanningCalorimetry(DSC).ThermalstabilityandphasetransitionsofcellvesiclesandtheircomplexeswererecordedbyGAD5,theζ-potentialis−13.4mVintheabsenceofzinc.TheDSCandTGAwithaLINSEISSTAPT1600instrument.Thisnegativeζ-potentialindicatesthepresenceofnegativelyinstrumentdeterminessimultaneouschanges(inasinglerun)ofmasschargedpeptideaggregates.Then,theζ-potentialofGAD5andcaloricreactionsofasample.Itperformstestsfromanultrahighincreaseswiththeincreaseinthezincconcentration,reachingvacuumof10−4mbarto5baroverpressure.Samplesweighing4−6apositivevalueof+1.4mVforaZn−GAD5molarratioof5.mgwereputinanaluminumpan,andanemptypanwasusedasaAtamolarratioof0.05,theζ-potentialwasnegativeasreference.Investigationswereperformedbetweenroomtemperatureexpectedatavalueof−12.9mV.AtthisneutralpH,GAD5isand700°Cwithaheatingrateof10°Cperminuteforpeptidesubjecttotautomerism,butattheconcentrationof5%zincrecruitingexperiments.Atthisheatingrateof10°Cperminute,thedegradationofthesampleswasreduced.TransitionparameterswerewhereGAD5remainslargelynegativelycharged,itcanbeobtainedwithincorporatedsoftware.ThealiquotsfromthesamereasonablyassumedthattheZn−GAD5−vesiclecomplexesarefreeze-driedsampleswereusedforRaman,infrared,SEM,TGA,andnotsignificantlyaffected.TheseDLSandζ-potentialdataagree17−1913,20,24,38−40DSC.withdatareportedintheliterature.2.7.ScanningElectronMicroscopy(SEM).TheSEMimagesTounravelthespecificfeaturesoftheZn−GAD5complexwereobtainedinaZeissMerlinFEG-SEMwithaGemini-IIcolumn.at5%,specificsamplesofGAD5werepreparedwithandAllsamplesweregoldsputter-coatedat30mAfor80s(K550Xwithout5%zincchlorideandanalyzedusingSEMandinfraredSputterCoater,QuorumTechnologiesLtd.,WestSussex,U.K.).An17−19techniques.Table2presentstheinfraredcurve-fittingresultsofacceleratingvoltageof5kVwasusedforallSEMobservations.GAD5anditscomplexes,whileFigure2presentstheSEMimagesofGAD5(Figure2A)andZn−GAD5complex(Figure3.RESULTSANDDISCUSSION2B).SEMimageofGAD5showselongatedfibrilsofabout103.1.EffectofZincIonsontheGAD5Structure.Toμmthicknessandplaques.SEMimageoftheZn−GAD5investigatetheeffectofzincionsonthestructureofpeptidecomplexshowsaggregatesincludingroundnodulesofabout6GAD5,theeffectofincreasingamountsofzinconthesizeandμm.FromTable2,thecorrespondingIRcurve-fittingdatasurfacechargeofthepeptideGAD5(Table1)wasmonitoredshowthatGAD5adoptsamixtureofhelixandsheetstructures,usingDLSandζ-potentialtechniques,respectively.InthewhiletheZn−GAD5complexadoptsamixtureofamorphousabsenceofzinc,DLSdataanalysisshowsthepresenceoftwoandturnstructurescorrespondingtothenodulesseenonSEMpopulations,onewhosehydrodynamicradiusdoesnotexceedimages.thevalueof41nm(24%)andtheotherbeingcharacterizedbyBasedonthat,itcanbeinferredthatthereasonwhythealargerradiusof164nm(76%).Then,thehydrodynamicconcentrationof0.5mMGAD5in20μMZnCl2waseffective3radiusofGAD5aggregatesdecreasedwiththeincreaseoftheinkillingbacteriaasstatedbyBrogdenetal.isthatitisonlyatzincconcentration,reachingaminimumvalueof31nmforathisconcentrationof5%zincchloridethatthepeptideGAD5Zn−GAD5molarratioof0.05.Beyondthemolarratioof0.05,adoptsaverycompactstructure,consistingofamixtureofturnthehydrodynamicradiusincreasedwiththeincreaseofthe(22%)andrandomcoil(78%)structuresbeforeinteractingzincconcentration.Aconclusionwasdrawnthatthewithbacteria.SincetheminimumhydrodynamicradiusofthecomplexationofzincaltersthesizeofGAD5aggregatesGAD5aggregateswasreachedusingaconcentrationof5%of14556https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

3Langmuirpubs.acs.org/LangmuirArticleTable3.AverageSizeDistributionofVesiclesMimickingEukaryotic(DPPC)MembranesforDifferentConcentrationsof10aμMZn−GAD5sample[Zn−GAD5]/[DPPC]molarratiohydrodynamicradius(peak#1)(nm)percent(%)Zn−GAD5freezinc:peptide31100[Zn−GAD5]/[DPPC]0.0183100[Zn−GAD5]/[DPPC]0.0246100[Zn−GAD5]/[DPPC]0.0371100[Zn−GAD5]/[DPPC]0.0572100[Zn−GAD5]/[DPPC]0.1153100[Zn−GAD5]/[DPPC]0.261100[Zn−GAD5]/[DPPC]0.3228100[Zn−GAD5]/[DPPC]1245100DPPC199100aAnerrorof4%wasobtainedfromthreeindependentmeasurements.Table4.AverageSizeDistributionofVesiclesMimickingBacterial(POPG)MembranesforDifferentConcentrationsof10aμMZn−GAD5[Zn−GAD5]/[POPG]molarhydrodynamicradius(peak#1)percenthydrodynamicradius(peak#2)percentsampleratio(nm)(%)(nm)(%)Zn−GAD5freeZn:GAD531100[Zn−GAD5]/[POPG]0.01166753825[Zn−GAD5]/[POPG]0.02135100[Zn−GAD5]/[POPG]0.03122882412[Zn−GAD5]/[POPG]0.05124802120[Zn−GAD5]/[POPG]0.1105100[Zn−GAD5]/[POPG]0.242100[Zn−GAD5]/[POPG]0.3180733627[Zn−GAD5]/[POPG]194100POPG8858267442aAnerrorof4%wasobtainedfromthreeindependentmeasurements.zincchloride,therestofourstudywasfocusedonthetobe88nmand42%ofPOPGparticlesarefoundtobeinteractionoftheGAD5peptidecontaining5%ofzincionsaround3μm.TheaggregationortheformationofnonlamellarwithDPPCandPOPGmodelmembranes.dispersionoflipidshasbeenfoundtoproducemultiplepeaks223.2.InvestigationoftheMembraneActivityandofthesizedistributionprofile.SelectivityofZn−GAD5Complex.AmechanismofInthepresenceofanincreasingamountofZn−GAD5,theinteractionbetweenZn−GAD5andthetwomodelmem-changesintheapparenthydrodynamicradiusofPOPGbraneswasproposedbasedonRaman,DSC,DLS,andζ-particlesaresignificantthroughtheentirerange(Table4).potentialdatausingdifferentlipid−peptidemolarratios.TheparticlesizeofPOPGvarieswithnocleartrend,showingStructuralstudieswereundertakenusingIR,TGA,andSEMsingleormultiplesizedistributionsatdifferentmolarratios.withaspecialemphasisonthephysicochemicalcharacteristicsTheassociationofZn−GAD5withPOPGreachedtheoftheZn−GAD5−vesiclecomplexesatlowpeptidesmallesthydrodynamicradiusof42nmatamolarratioofconcentration.Thepeptide−lipidmolarratioof1:100was0.2;atthismolarratio,thehydrodynamicradiusdecreasedusedinaccordancewithstandardreportsforlowpeptidefrom88to42nmforalloftheparticlesinsolution.13,17−19concentration.BasedonDLSdata,theinteractionbetweenZn−GAD53.2.1.CharacterizationofZn−GAD5−VesicleComplexesseemstobestrongerwithDPPCthanwithPOPG,butabyDLSandζ-Potential.ToinvestigatetheinteractionofthecomplementaryapproachusingstructuraldataisneededtoZn−GAD5complexwithDPPCandPOPG,theeffectofgiveaclearpictureoftheseinteractions.BecauselowpeptideincreasingamountsoftheZn−GAD5complexonthesizeofconcentrationwithrespecttotheamountoflipidismoreDPPCorPOPGatdifferentpeptide−lipidmolarratioswasrelevantinbiologicalsystems,therestofthisstudyislimitedtomonitoredusingDLStechnique(Tables3and4).DPPCandthezinc−peptide/lipidmolarratioof1:100.POPGsolutionswereusedascontrol.3.2.2.CharacterizationofZn−GAD5−VesicleComplexesIntheabsenceofZn−GAD5,thehydrodynamicradiusofbyRamanSpectroscopy.Ramantechniquewasusedtostudy12DPPCparticlesisfoundtobe199nm.InthepresenceofanthelocationofZn−GAD5withrespecttothelipidbilayer.increasingamountofZn−GAD5,thehydrodynamicradiusofZn−GAD5maybelocalizedinthehydrophobicregionwithDPPCincreasessignificantlythroughtheentirerange,withatheacylchains,atthesurfaceincontactwiththephosphatesinglesizedistributionprofile(Table3).Thissuggestsastrongheadgroups,orbetweenthesetworegions.Intheliterature,22the1000−1200cm−1regionhasbeenhelpfulininvestigatingassociationbetweenZn−GAD5andDPPC.IntheabsenceofZn−GAD5,thehydrodynamicradiusthedelocalizedC−Cstretchingvibrations,involvinglongprofileofPOPGparticlespresentsmultiplepeakscorrespond-portionsoftheacylchains,andthephosphategroup12,23,41,42ingtomultiplepopulations:58%ofPOPGparticlesarefoundmodes.TheRamanspectraoftheDPPCandPOPG14557https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

4Langmuirpubs.acs.org/LangmuirArticlevesicleswithandwithoutZn−GAD5wererecordedintheIncontrast,inthesameconditions,usingPOPG,itwasregioncitedaboveandanalyzed.OurreferenceRamanspectraobservedthattheratiosI1098/I1126andI1098/I1062increasedarethoseofDPPCandPOPGvesicleswithoutZn−GAD5.from0.588and0.465inthefree-peptidePOPGvesiclestoTheeffectofZn−GAD5ontheintensityandfrequencyofthe1.866and>1.0intheZn−GAD5−POPGvesicles,respectively.acylandphosphategroupbandsoftheDPPCandPOPGTheincreasesuggestsasignificantincreaseinthenumberofvesicleswassubsequentlymonitored.Figure3displayspeakgauchebonds,suggestingthatZn−GAD5disturbstheorderoftheacylchainsinthehydrophobiccore,whichimplythatZn−GAD5maybelocalizeddeepinsidethehydrophobiccoreofthePOPGvesicles.Infact,thefrequencyofthephosphategroupat1093cm−1shiftedfrom1093to1081cm−1,theshifttolowerfrequencysuggestingthatZn−GAD5isstronglyinteractingwiththephosphategroupatthesurfaceofthePOPGvesicles.ThisresultshowsthattheRamantechniquedetectstheinteractionasithasbeenshowntobeavery22,23,27sensitivetoolinthedetectionofphosphategroups.Inaddition,RamanspectrashowthattheCObandataround1735cm−1shiftedtoahigherwavenumber1745cm−1,suggestingthattheCOgroupsarenotinvolvedintheinteractionwithZn−GAD5.FromtheRamandata,onecaninferthatZn−GAD5islocatedbetweenthehydrophobiccoreandthemembranesurface.Insummary,ata1:100molarratio,theinteractionZn−GAD5withPOPGisdrivenbyelectro-staticinteractionswiththeheadgroupregionofthebilayerFigure3.NormalRamanspectraoflyophilizedsamplesofvesiclesmimickingeukaryotic(DPPC)membranes,bacterial(POPG)withnodisturbanceoftheacylchainregion.Thus,Zn−GAD5membranes,andtheircomplexeswithZn−GAD5inthephosphateactivityismediatedbyamechanismofactionwelldescribedby−1otherresearcherssuchasdosSantosCabreraetal.50Theyregion(1000−1200cm).showedthatthepeptideaccumulatesontheheadgroupregioncharacteristicofvibrationsofhydrocarbonchainsintheofthenormalmembrane,leadingtotheincreasedpermeability1,000−1,200cm−1region.TheC−Cstretchingvibrationmodeofthemimeticmembranetoformporesordefects.isassociatedwithtrans/gaucheconformationchangesintheOneadditionalfeatureisthatwhenZn−GAD5−DPPCisfattyacidchains.23,43−46ThethreecharacteristicpeaksatcomparedtoZn−GAD5−POPGinthe1500−1800cm−1amidaround1062,1098,and1126cm−1havebeenassignedintheregion,itwasobservedthatthepeaksonZn−GAD5−DPPCliterature.26−28The1062and1126cm−1peakscorrespondtoaresharp,suggestingahighlyorderedstructure,whilethetheout-of-phaseandin-phasetransconformationoftheC−CpeaksonZn−GAD5−POPGarebroad,suggestingalargeskeleton,andthe1098cm−1peakcorrespondsnotonlytothenetworkofhydrogenbondsand,thus,thepresenceofgaucheconformationoftheC−Cskeletonbutalsototheamorphousaggregates,asseenandconfirmedbyinfraredinsymmetricPO−stretchingmode.TheintensityratiosI/thenextsection.21098I1126andI1098/I1062reflecttheproportionoftrans/gauche3.2.3.CharacterizationofZn−GAD5−VesicleComplexesconformationinthechain,whichareoftenusedtocharacterizebyThermalAnalysis.TGAtechniquewasusedtoexaminethethelipidchaindisorder.26−28stabilityofthecomplexes,whiletheDSCtechniquewasusedThechangesinRamanintensityratiosI1098/I1126andI1098/toevaluatethemoisturecontentofthecomplexes.ThelevelofI1062oftheDPPCvesicleswerealsomonitored.Thestrikinghydrationhasbeenfoundtoaffectthethermalstabilityof51,5251findinginthisstudyisthatatamolarratioof5%,itwaspeptides.AccordingtoLiberatoetal.,watermoleculesobservedthattheratiosI1098/I1126andI1098/I1062decreasedmayformabridgebetweenhydrophobicmoleculesleadingtofrom0.852and0.764inthefree-peptideDPPCvesiclestoanextendednetwork.Also,whentheyareintercalatedintothe0.469and0.424intheZn−GAD5−DPPCvesicles,respec-matrixoftheassemblies,theywouldstimulatetheformationoftively,suggestingasignificantdecreaseinthenumberofgaucheH-bonds,whichwouldaccountfortheself-assemblyoflargerbonds.ThisdecreaseindicatesthatZn−GAD5causedthestructures.Inaddition,interlamellarwaterhasbeenfoundto53,54orderofthelipidacylchainandmembranefluidityoftheincreasethestabilityofsamplescontainingmetalions.ToDPPCvesicles,andthusZn−GAD5isnotlocatedinthesummarize,ourfocushasbeenontheregionbetween200and12450°C,whichcorrespondstothebreakingofthebonds.Thishydrophobiccoreregionofthemembrane.Inaddition,thefrequencyofthephosphategroupat1103cm−1peakslightlytemperaturerangeincludescomplexeventssuchasdecarbox-decreasedto1099cm−1confirmingthatZn−GAD5isylation,deamination,desulfuration,anddephosphorylation.interactingwiththephosphategroupofthelipidsandliesForDSCexperiments,theregionofinterestisbetween20023,43−46ontothemembranesurface.Inaddition,Ramanspectraand300°C,whichcorrespondstotheappearanceofshowthattheCObandataround1740cm−1hasalmostinterlamellarwater.53,54disappeared,suggestingthattheCOgroupsarealsoinvolvedFigure4displaystheDSCthermogramsofDPPCandintheinteractionwithZn−GAD5.FromtheRamandata,onePOPGandtheircomplexeswithZn−GAD5.DSCwasappliedcaninferthatZn−GAD5mayaccumulateovertimeatthewiththegoaloffurtherunderstandinghowtheZn−GAD5membranesurfaceformingbundlesorclustersofpeptidesatcomplexinteractswiththelipidvesiclesata1:100peptide−47−4917−19thesurfaceinagreementwiththeliterature.Infact,lipidmolarratio.Figure4showstheappearanceofa47Masudaetal.suggestthattheaccumulationofpeptidesonsharppeakataround248°ContheZn−GAD5−DPPCthesurfacemaypromotemembranebending.complex,suggestingthepresenceofinterlamellarwater14558https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

5Langmuirpubs.acs.org/LangmuirArticlechargedphospholipids,thecomplexremainsunorderedandunstable.3.2.4.StructuralAnalysis.InfraredspectroscopywasusedtodeterminethesecondarystructureoftheZn−GAD5complexwithinthemodelmembranes.ThesecondarystructureoftheZn−GAD5complexwithandwithoutDPPCandPOPGcellmembraneswasexaminedbycomparingFouriertransforminfraredspectroscopy(FTIR)spectraatamideI(1700−1600cm−1)andamideII(1600−1500cm−1)26,27,56regionsthatarecharacteristicofpeptides.ThegoalistoobservewhethertheconformationoftheZn−GAD5changesinthepresenceofDPPCandPOPGmodelmembranes.Figure6presentstheoriginalFTIRspectraofthesamplesintheFigure4.DSCthermogramsforlyophilizedsamplesofvesiclesmimickingeukaryotic(DPPC)membranes,bacterial(POPG)membranes,andtheircomplexeswithZn−GAD5.53,55necessaryforincreasedstability.ThispeakindicatesanincreaseinstabilityofDPPCaftertheadditionoftheZn−GAD5complex.ThereisnosuchpeakintheZn−GAD5−POPGcomplex.TheseDSCdataaresuggestingthattheZn−GAD5−DPPCcomplexisstrongerthantheZn−GAD5−POPGcomplexinagreementwithDLSandRamandataintheprevioussections.Togainmoreinsightsintothestabilityofthecomplexes,Figure5showstheTGAthermogramsofDPPCandPOPGFigure6.FTIRspectraoflyophilizedsamplesofGAD5anditscomplexesinthecarbonylandamideIandIIregions.regionscitedabove.TheFTIRspectrumofZn−GAD5showsabroaddissymmetricpeakwithtwomaximaintheamideIregion.TheamideIbandsintheseregionsaresobroadthatitisdifficulttodeterminethesecondarystructureofthepeptide.17−19AnFTIRcurve-fittingprocedurewasapplied.TheresultsofquantitativeanalysisofpeptideconformationrevealthatZn−GAD5consistsofamixtureofturn(22%)andrandomcoil(78%)structures(Table2).Knowingthatthecompositionofmodelmembranesisdifferent,thegoalwastomonitorifthesedifferencestranslatetoadifferentimpactonthepeptideinterface.InthepresenceofDPPCmodelmembranes,Zn−GAD5atFigure5.TGAthermogramsforlyophilizedsamplesofvesicleslowconcentrationcontainsamajorhelixstructure(100%).mimickingeukaryotic(DPPC)membranes,bacterial(POPG)The78%ofamorphousstructureofZn−GAD5areconvertedmembranes,andtheircomplexeswithZn−GAD5.intoamoreorderedstructurethatishelixstructureinthepresenceofDPPC,probablybecauseDPPCentersincontactandtheircomplexeswithZn−GAD5.At50%massloss,thewiththeZn−GAD5atthesurfaceofthemembrane,asshownZn−GAD5−DPPCcomplexisdecomposingathighertemper-byRamanspectra.InthepresenceofPOPGmodelaturethanpureDPPC,whileZn−GAD5−POPGisdecom-membranes,Zn−GAD5atlowpeptideconcentrationstillposingalmostatthesametemperaturethanitscorrespondingcontainsamajorrandomcoilstructure(66%).The22%ofpurePOPG,confirmingtheconclusionfromDSCdata.TheturnstructureisnotconvertedintoanamorphousstructureininvolvementoftheNH+groupintheinteractionofDPPCthepresenceofPOPG,probablybecausezincionsdonot4withZn−GAD5mayleadtoanincreaseinthetransitioninfluencethelipidbecauseZn−GAD5isembeddedintothe53,54temperature.MeasurementsfromtheTGAcurveindicatehydrophobiccoreofthelipidandthelipiddoesnotsensethethatthemasslossofGAD5−Zn−DPPCduetointerlamellarpresenceofzincions,contrarytoDPPC.Theseobservationswaterisabout10%ofitstotalmass,correspondingtoanagreewiththeRamandatapresentedinthesectionabove.enthalpychangeof244J/gdeducedfromtheDSCcurve.Overall,thestructuralmeasurementsprovidethefirstTheseresultsfromDSCandTGAindicatethattheZn−GAD5explanationofhowGAD5bindstolipidbilayersinthecomplexshowspreferencesforbacteria-mimickingneutralpresenceofzincions.Themechanismofinteractionbetween(zwitterionic)membranes.InthepresenceofnegativelythesemembranesandZn−GAD5atlowpeptideconcentration14559https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

6Langmuirpubs.acs.org/LangmuirArticleFigure7.SEMimagesoflyophilizedsamplesoftheZn−GAD5complex(A),ofvesiclesmimickingeukaryotic(DPPC)membranes(B),bacterial(POPG)membranes(C),andoflyophilizedsamplesoftheZn−GAD5complexwithvesiclesmimickingeukaryotic(DPPC)(D)andbacterial(POPG)membranes(E).involvesaconformationchange.IRcurve-fittingdatarevealthepresenceofDPPC,whiletheamorphousportionremainsthatZn−GAD5undergoesalipid-inducedconformationalsignificantinthepresenceofPOPG.ComparisonofpanelsB,transitionintoahelix-likestructureinthepresenceofDPPCCandD,EofFigure7revealsthatZn−GAD5hasadifferentmembrane,whereasZn−GAD5remainsmostlyamorphousineffectoneukaryoticandbacterialmembranes,asshownbythepresenceofPOPGmodelmembrane.Ramandata.SEMimagessuggestthatZn−GAD5disrupts47Masudaetal.reportedthatanamphiphilicpeptideR6W3eukaryoticandbacterialcellsmimickingmembranesby28−33stimulatedanendocyticuptakebyinducingmembraneformingsuperstructures.curvature.Theyobservedtheclusteringofthepeptideonthecellsurface,likeinourexperiments,andconcludedthatthe4.CONCLUSIONSmechanicalformationofconcavecurvaturebyexternallyaddedOurresultsprovidethefirstinsightsintotheeffectofzincionspeptidemayleadtotheendocyticevent,inagreementwithonthestructureoftheanionicpeptideGAD5.Revealingthatotherresearchers.ThiseventwasalsofollowedbyatransitionthepeptideGAD5adoptsaconformationdominatedbyaofthepeptideintoahelix-likestructureasseeninourinfraredcompactfoldedstructureinthepresenceofasmallamountofexperimentsandalterationofmembranemorphologyasseenzinc,measurementsshowthattheassociationoftheZn−inourSEMimages.ThissuggeststhattheZn−GAD5complexGAD5complexwithmodelmembranesisstrongtowardpromotesapossibleendocyticuptakewithrespecttoneutral47neutralphospholipids.Thecombinedinvestigationofthe(zwitterionic)membranesalthough,likeMasudaetal.,ourstructurebyinfraredandstabilitybyTGAandDSCledtotheunderstandingisthatthemechanismmaynotbeasingle,conclusionthattheaggregationofGAD5inthepresenceofcanonicalendocyticmechanism.zincistheresultofthestructuralchangeratherthanpurelya3.2.5.UltrastructuralAnalysis.Toobservehowthechangeinelectrostaticinteractions,andthethermalstabilityisdifferencesinmembranecompositionofbothmodelduetothepresenceofinterlamellarwater.SignificantmembranesareaffectedbytheZn−GAD5complexand17−19differenceswereobservedinthestrengthandthemodeoftranslateinmorphology,SEMtechniquewasused.TheactionofthepeptideasafunctionofchargeofthelipidSEMimagesshowninpanels(A−C)ofFigure7presenttheheadgroup.WhiletheinteractionisstrongwiththeimagesoftheZn−GAD5complex,vesiclesmimickingzwitterionicDPPCheadgroupandquaternaryammoniumeukaryotic(DPPC)andbacterial(POPG)membranes,group,theZn−GAD5interactionwiththeanionicPOPGisrespectively,whilethoseinpanelsDandEpresenttheimagesmarginalatourworkconditions.ThecorrelationsseeninouroftheZn−GAD5complexwithvesiclesmimickingeukaryoticstudiesbetweentheroleofmetalionsonthestructureof(DPPC)andbacterial(POPG)membranes.TheSEMimageantimicrobialpeptidesandtheirbiophysicalinteractionswithoftheZn−GAD5complex(panelA)presentsnodulesmodelmembranesillustratethesignificanceofsuchstudiesinembeddedinaggregates,whiletheSEMimagesofpurepredictinginteractionsofantimicrobialpeptideswithcells.DPPCandPOPG(panelB,C)presentlargeamorphousThisstudywouldsuggestthattheZn−GAD5complexaggregates.Figure7providesstrongevidencethataddingapromotesapossibleendocyticuptakewithrespecttoneutralzinc-boundpeptidetomodelmembranesinducessuper-(zwitterionic)membranes.structuresconsistingofsphericalballs.InthepresenceofDPPC(panelD),theballshavearoughsurfaceandarelarge■andisolated,whileinthepresenceofPOPG(panelE),theASSOCIATEDCONTENTballsareembeddedinlargeamorphousaggregates.Thesedata*sıSupportingInformationagreewithIRdatasuggestingthatalloftheamorphousportionTheSupportingInformationisavailablefreeofchargeat(78%)oftheZn−GAD5complexistransformedintohelixinhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c02306.14560https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

7Langmuirpubs.acs.org/LangmuirArticleGraphshowingparticlesizesofZn−GAD5atvarious(5)Fales-Williams,A.J.;Brogden,K.A.;Huffman,E.;Gallup,J.M.;molarratios,measuredbydynamiclightscatteringAckermann,M.R.CellularDistributionofAnionicAntimicrobial(PDF)PeptideinNormalLungandduringAcutePulmonaryInflammation.Vet.Pathol.2002,39,706−711.(6)Brogden,K.A.;Ackermann,M.;Huttner,K.M.Detectionof■AUTHORINFORMATIONAnionicAntimicrobialPeptidesinOvineBronchoalveolarLavageCorrespondingAuthorsFluidandRespiratoryEpithelium.Infect.Immun.1998,66,5948−NsokiPhambu−DepartmentofChemistry,TennesseeState5954.University,Nashville,Tennessee37209,UnitedStates;(7)Brogden,K.A.;Ackermann,M.;Huttner,K.M.Small,Anionic,Email:nphambu@tnstate.eduandCharge-NeutralizingPropeptideFragmentsofZymogensAreAndersonSunda-Meya−DepartmentofPhysicsandAntimicrobial.Antimicrob.AgentsChemother.1997,41,1615−1617.(8)Brogden,K.A.;Ackermann,M.R.;McCray,P.B.;Huttner,K.ComputerScience,XavierUniversityofLouisiana,NewM.DifferencesintheConcentrationsofSmall,Anionic,AntimicrobialOrleans,Louisiana70125,UnitedStates;orcid.org/PeptidesinBronchoalveolarLavageFluidandinRespiratoryEpithelia0000-0002-6346-4326;Email:asundame@xula.eduofPatientswithandwithoutCysticFibrosis.Infect.Immun.1999,67,4256−4259.Authors(9)Malanovic,N.;Leber,R.;Schmuck,M.;Kriechbaum,M.;BashiyarAlmarwani−DepartmentofChemistry,TennesseeCordfunke,R.A.;Drijfhout,J.W.;deBreij,A.;Nibbering,P.H.;StateUniversity,Nashville,Tennessee37209,UnitedStatesKolb,D.;Lohner,K.Phospholipid-DrivenDifferencesDeterminetheYahiaZ.Hamada−DepartmentofNaturalandActionoftheSyntheticAntimicrobialPeptideOP-145onGram-MathematicalSciences,LeMoyne-OwenCollege,Memphis,PositiveBacterialandMammalianMembraneModelSystems.Tennessee38126,UnitedStatesBiochim.Biophys.Acta,Biomembr.2015,1848,2437−2447.(10)Mendonca,C.M.N.;Balogh,D.T.;Barbosa,S.C.;Sintra,T.̧Completecontactinformationisavailableat:E.;Ventura,S.P.M.;Martins,L.F.G.;Morgado,P.;Filipe,E.J.M.;https://pubs.acs.org/10.1021/acs.langmuir.0c02306Coutinho,J.A.P.;Oliveira,O.N.;Barros-Timmons,A.Under-standingtheInteractionsofImidazolium-BasedIonicLiquidswithAuthorContributionsCellMembraneModels.Phys.Chem.Chem.Phys.2018,20,29764−Themanuscriptwaswrittenthroughcontributionsofall29777.authors.Allauthorshavegivenapprovaltothefinalversionof(11)Zhao,L.;Cao,Z.;Bian,Y.;Hu,G.;Wang,J.;Zhou,Y.themanuscript.MolecularDynamicsSimulationsofHumanAntimicrobialPeptideFundingLL-37inModelPOPCandPOPGLipidBilayers.Int.J.Mol.Sci.TheauthorA.S.-M.receivedfundingforsuppliesfromNSF2018,19,1186.(12)Schultz,Z.D.;Levin,I.W.VibrationalSpectroscopyofGrant1832167.Biomembranes.Annu.Rev.Anal.Chem.2011,4,343−366.Notes(13)Pinheiro,M.;Arede,M.;Giner-Casares,J.J.;Nunes,C.;Caio,J.̂Theauthorsdeclarenocompetingfinancialinterest.M.;Moiteiro,C.;Lucio,M.;Camacho,L.;Reis,S.EffectsofaNoveĺAntimycobacterialCompoundontheBiophysicalPropertiesofa■ACKNOWLEDGMENTSPulmonarySurfactantModelMembrane.Int.J.Pharm.2013,450,RamanandSEMexperimentswereconductedatthe268−277.(14)Carrillo,C.;Teruel,J.A.;Aranda,F.J.;Ortiz,A.MolecularVanderbiltInstituteofNanoscaleScienceandEngineeringMechanismofMembranePermeabilizationbythePeptideAntibiotic(VINSE)facility.NsokiPhambuwantstoexpresshisdeepestSurfactin.Biochim.Biophys.Acta,Biomembr.2003,1611,91−97.gratitudetoTennesseeStateUniversityforthesupport.This(15)Pandit,K.R.;Klauda,J.B.MembraneModelsofE.colimaterialisbaseduponworksupportedbytheNationalScienceContainingCyclicMoietiesintheAliphaticLipidChain.Biochim.FoundationResearchInitiationAwardsunderGrantNo.Biophys.Acta,Biomembr.2012,1818,1205−1210.1411209.(16)Cheng,J.T.J.;Hale,J.D.;Elliott,M.;Hancock,R.E.W.;Straus,S.K.TheImportanceofBacterialMembraneCompositionin■ABBREVIATIONStheStructureandFunctionofAurein2.2andSelectedVariants.SEM,scanningelectronmicroscopy;FTIR,FouriertransformBiochim.Biophys.Acta,Biomembr.2011,1808,622−633.(17)Almarwani,B.;Phambu,E.N.;Alexander,C.;Nguyen,H.A.infrared;TGA,thermogravimetricanalysis;DSC,differentialT.;Phambu,N.;Sunda-Meya,A.VesiclesMimickingNormalandscanningcalorimetry;DPPC,dipalmitoylphosphocholine;CancerCellMembranesExhibitDifferentialResponsestotheCell-POPG,palmitoyloleoylphosphoglycerol;GAD5,PenetratingPeptidePep-1.Biochim.Biophys.Acta,Biomembr.2018,GADDDDD-OH;DLS,dynamiclightscattering1860,1394−1402.(18)Phambu,N.;Almarwani,B.;Alwadai,A.;Phambu,E.N.;■REFERENCESFaciane,N.;Marion,C.;Sunda-Meya,A.Calorimetricand(1)Gopal,R.;Na,H.;Seo,C.;Park,Y.AntifungalActivityof(KW)nSpectroscopicStudiesoftheEffectsoftheCellPenetratingPeptideor(RW)nPeptideagainstFusariumSolaniandFusariumOxysporum.Pep-1andtheAntimicrobialPeptideCombi-2onVesiclesMimickingInt.J.Mol.Sci.2012,13,15042−15053.EscherichiacoliMembrane.Langmuir2017,33,12908−12915.(2)Mishra,A.;Choi,J.;Moon,E.;Baek,K.-H.Tryptophan-Richand(19)Phambu,N.;Almarwani,B.;Garcia,A.M.;Hamza,N.S.;Proline-RichAntimicrobialPeptides.Molecules2018,23,815.Muhsen,A.;Baidoo,J.E.;Sunda-Meya,A.ChainLengthEffectonthe(3)Brogden,K.A.;DeLucca,A.J.;Bland,J.;Elliott,S.IsolationofStructureandStabilityofAntimicrobialPeptidesofthe(RW)nanOvinePulmonarySurfactant-AssociatedAnionicPeptideBacter-Series.Biophys.Chem.2017,227,8−13.icidalforPasteurellaHaemolytica.Proc.Natl.Acad.Sci.U.S.A.1996,(20)Huang,C.-H.PhosphatidylcholineVesicles.Formationand93,412−416.PhysicalCharacteristics.Biochemistry1969,8,344−352.(4)Dennison,S.R.;Howe,J.;Morton,L.H.G.;Brandenburg,K.;(21)Russell,A.L.;Kennedy,A.M.;Spuches,A.M.;Gibson,W.S.;Harris,F.;Phoenix,D.A.InteractionsofanAnionicAntimicrobialVenugopal,D.;Klapper,D.;Srouji,A.H.;Bhonsle,J.B.;Hicks,R.P.PeptidewithStaphylococcusAureusMembranes.Biochem.Biophys.DeterminingtheEffectoftheIncorporationofUnnaturalAminoRes.Commun.2006,347,1006−1010.AcidsintoAntimicrobialPeptidesontheInteractionswith14561https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

8Langmuirpubs.acs.org/LangmuirArticleZwitterionicandAnionicMembraneModelSystems.Chem.Phys.(41)Pu,C.;Tang,W.AffinityandSelectivityofAnchovyLipids2011,164,740−758.AntibacterialPeptideforStaphylococcusAureusCellMembrane(22)Sweetenham,C.S.;Notingher,I.RamanSpectroscopyLipidandItsApplicationinWholeMilk.FoodControl2017,72,153−MethodsforDetectingandImagingSupportedLipidBilayers.163.Spectroscopy2010,24,113−117.(42)Szczes,A.PhosphateMineralFormationontheSupported́(23)Carrier,D.;Pezolet,M.RamanSpectroscopicStudyofthéDipalmitoylphosphatidylcholine(DPPC)Layers.Mater.Sci.Eng.,CInteractionofPoly-L-LysinewithDipalmitoylphosphatidylglycerol2014,40,373−381.Bilayers.Biophys.J.1984,46,497−506.(43)Maherani,B.;Arab-Tehrany,E.;Rogalska,E.;Korchowiec,B.;(24)López-Oyama,A.B.;Taboada,P.;Burboa;María,G.;Kheirolomoom,A.;Linder,M.Vibrational,Calorimetric,andRodríguez,E.;Mosquera,V.;Valdez,M.A.InteractionoftheMolecularConformationalStudyonCalceinInteractionwithModelCationicPeptideBactenecinwithMixedPhospholipidMonolayersatLipidMembrane.J.Nanopart.Res.2013,15,1792.theAir−WaterInterface.J.ColloidInterfaceSci.2011,359,279−288.(44)DiFoggia,M.;Bonora,S.;Tinti,A.;Tugnoli,V.DSCand(25)Jiao,Y.;Koktysh,D.S.;Phambu,N.;Weiss,S.M.Dual-ModeRamanStudyofDMPCLiposomesinPresenceofIbuprofenatSensingPlatformBasedonColloidalGoldFunctionalizedPorousDifferentPH.J.Therm.Anal.Calorim.2017,127,1407−1417.Silicon.Appl.Phys.Lett.2010,97,No.153125.(45)Krafft,C.;Neudert,L.;Simat,T.;Salzer,R.NearInfrared(26)Dyck,M.;Kerth,A.;Blume,A.;Lösche,M.InteractionoftheRamanSpectraofHumanBrainLipids.Spectrochim.Acta,PartANeurotransmitter,NeuropeptideY,withPhospholipidMembranes:2005,61,1529−1535.InfraredSpectroscopicCharacterizationattheAir/WaterInterface.J.(46)Kitt,J.P.;Bryce,D.A.;Minteer,S.D.;Harris,J.M.RamanPhys.Chem.B2006,110,22152−22159.SpectroscopyRevealsSelectiveInteractionsofCytochromecwith(27)Blume,A.;Huebner,W.;Messner,G.FourierTransformCardiolipinThatCorrelatewithMembranePermeability.J.Am.InfraredSpectroscopyof13C:OLabeledPhospholipidsHydrogenChem.Soc.2017,139,3851−3860.BondingtoCarbonylGroups.Biochemistry1988,27,8239−8249.(47)Masuda,T.;Hirose,H.;Baba,K.;Walrant,A.;Sagan,S.;(28)Jehle,F.;Fratzl,P.;Harrington,M.J.Metal-TunableSelf-Inagaki,N.;Fujimoto,T.;Futaki,S.AnArtificialAmphiphilicPeptideAssemblyofHierarchicalStructureinMussel-InspiredPeptideFilms.PromotesEndocyticUptakebyInducingMembraneCurvature.ACSNano2018,12,2160−2168.BioconjugateChem.2020,No.1611.(29)Gong,Z.;Liu,X.;Dong,J.;Zhang,W.;Jiang,Y.;Zhang,J.;(48)Drin,G.;Antonny,B.AmphipathicHelicesandMembraneFeng,W.;Chen,K.;Bai,J.TransitionfromVesiclestoNanofibresinCurvature.FEBSLett.2010,584,1840−1847.theEnzymaticSelf-AssembliesofanAmphiphilicPeptideasan(49)McMahon,H.T.;Gallop,J.L.MembraneCurvatureandAntitumourDrugCarrier.Nanoscale2019,11,15479−15486.MechanismsofDynamicCellMembraneRemodelling.Nature2005,(30)Wang,M.;Wang,J.;Zhou,P.;Deng,J.;Zhao,Y.;Sun,Y.;Yang,438,590−596.W.;Wang,D.;Li,Z.;Hu,X.;King,S.M.;Rogers,S.E.;Cox,H.;(50)dosSantosCabrera,M.P.;Baldissera,G.;Silva-Goncalves,L.̧Waigh,T.A.;Yang,J.;Lu,J.R.;Xu,H.NanoribbonsSelf-AssembledD.C.;deSouza,B.M.;Riske,K.A.;Palma,M.S.;Ruggiero,J.R.;fromShortPeptidesDemonstratetheFormationofPolarZippersArcisio-Miranda,M.CombiningExperimentalEvidenceandMolec-betweenβ-Sheets.Nat.Commun.2018,9,No.5118.ularDynamicSimulationstoUnderstandtheMechanismofActionof(31)Li,X.;Cao,C.;Wei,P.;Xu,M.;Liu,Z.;Liu,L.;Zhong,Y.;Li,theAntimicrobialOctapeptideJelleine-I.Biochemistry2014,53,R.;Zhou,Y.;Yi,T.Self-AssemblyofAmphiphilicPeptidesfor4857−4868.RecognizingHighFurin-ExpressingCancerCells.ACSAppl.Mater.(51)Liberato,M.S.;Kogikoski,S.;Silva,E.R.;Coutinho-Neto,M.Interfaces2019,11,12327−12334.D.;Scott,L.P.B.;Silva,R.H.;Oliveira,V.X.;Ando,R.A.;Alves,W.(32)Dasgupta,A.;Das,D.DesignerPeptideAmphiphiles:Self-A.Self-AssemblyofArg−PheNanostructuresviatheSolid−VaporPhaseMethod.J.Phys.Chem.B2013,117,733−740.AssemblytoApplications.Langmuir2019,35,10704−10724.(52)Dandurand,J.;Samouillan,V.;Lacoste-Ferre,M.H.;(33)Kornmueller,K.;Lehofer,B.;Meindl,C.;Fröhlich,E.;Lacabanne,C.;Bochicchio,A.P.ConformationalandThermalLeitinger,G.;Amenitsch,H.;Prassl,R.PeptidesattheInterface:CharacterizationofaSyntheticPeptidicFragmentInspiredfromSelf-AssemblyofAmphiphilicDesignerPeptidesandTheirMem-HumanTropoelastin:SignatureoftheAmyloidFibers.Pathol.Biol.braneInteractionPropensity.Biomacromolecules2016,17,3591−2014,62,100−107.3601.(53)Shi,X.-M.;Tang,R.-R.;Gu,G.-L.;Huang,K.Synthesisand(34)Bouffioux,O.;Berquand,A.;Eeman,M.;Paquot,M.;Dufrene,̂FluorescencePropertiesofLanthanide(III)ComplexesofaNovelY.F.;Brasseur,R.;Deleu,M.MolecularOrganizationofSurfactin−Bis(Pyrazolyl-Carboxyl)Pyridine-BasedLigand.Spectrochim.Acta,PhospholipidMonolayers:EffectofPhospholipidChainLengthandPartA2009,72,198−203.PolarHead.Biochim.Biophys.Acta,Biomembr.2007,1768,1758−(54)Carvalho,H.W.P.;Pulcinelli,S.H.;Santilli,C.V.;Leroux,F.;1768.Meneau,F.;Briois,V.XAS/WAXSTime-ResolvedPhaseSpeciation(35)Nguyen,S.;Hiorth,M.;Rykke,M.;Smistad,G.ThePotentialofChlorineLDHThermalTransformation:EmergingRolesofofLiposomesasDentalDrugDeliverySystems.Eur.J.Pharm.IsovalentMetalSubstitution.Chem.Mater.2013,25,2855−2867.Biopharm.2011,77,75−83.2+(55)Liu,X.;Zhu,P.;Fei,J.;Zhao,J.;Yan,X.;Li,J.Synthesisof(36)Reviakine,I.;Simon,A.;Brisson,A.EffectofCaonthePeptide-BasedHybridNanobeltswithEnhancedColorEmissionbyMorphologyofMixedDPPC−DOPSSupportedPhospholipidHeatTreatmentorWaterInduction.Chem.-Eur.J.2015,21,9461−Bilayers.Langmuir2000,16,1473−1477.9467.(37)Krapf,L.;Dezi,M.;Reichstein,W.;Köhler,J.;Oellerich,S.(56)Díaz-Caballero,M.;Navarro,S.;Ventura,S.SolubleAssembliesAFMCharacterizationofSpin-CoatedMultilayeredDryLipidFilmsintheFibrillationPathwayofPrion-InspiredArtificialFunctionalPreparedfromAqueousVesicleSuspensions.ColloidsSurf.,B2011,AmyloidsAreHighlyCytotoxic.Biomacromolecules2020,21,2334−82,25−32.2345.(38)Maity,P.;Saha,B.;SureshKumar,G.;Karmakar,S.EffectofZwitterionicPhospholipidontheInteractionofCationicMembraneswithMonovalentSodiumSalts.Langmuir2018,34,9810−9817.(39)Domingues,M.M.;Santiago,P.S.;Castanho,M.A.R.B.;Santos,N.C.WhatCanLightScatteringSpectroscopyDoforMembrane-ActivePeptideStudies?J.Pept.Sci.2008,14,394−400.(40)Nguyen,T.L.;Nguyen,T.H.;Nguyen,D.H.DevelopmentandInVitroEvaluationofLiposomesUsingSoyLecithintoEncapsulatePaclitaxel.Int.J.Biomater.2017,2017,1−7.14562https://dx.doi.org/10.1021/acs.langmuir.0c02306Langmuir2020,36,14554−14562

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭