基于fpga的arinc429总线接口卡设计

基于fpga的arinc429总线接口卡设计

ID:8389161

大小:156.50 KB

页数:0页

时间:2018-03-24

基于fpga的arinc429总线接口卡设计_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《基于fpga的arinc429总线接口卡设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、基于FPGA的ARINC429总线接口卡设计2012年04月12日11:42来源:本站整理作者:秩名我要评论(0)  1引言  ARINC429总线广泛应用于商务运输航空领域,如空中客车A310/A320、A330/A340飞机,波音公司727、737、747、757和767飞机,麦道公司MD-11飞机等。它采用异步双极性归零码进行数据的编码,并通过双绞线传输,具有很强的抗干扰性能。目前市场上的ARINC429总线接口设计一般都采用专用接口芯片,如DeviceEngineering公司的DEI-1016,INTERSIL公司的HS-3282等,这些专用芯片价格昂贵,且路数有限

2、,使用非常不灵活。本设计将ALTERA公司的FPGA芯片应用于ARINC429标准数据传输,并完成了与计算机USB接口的通信,有效缩小了系统体积并降低了成本,同时也增加了系统配置的灵活度。  2ARINC429总线数据  ARINC429数据总线协议规定一个数据字由32位组成,以脉冲形式发送,采用双极性归零码,码速率为12.5kb/s或100kb/s。电气特性为:高电平(+10V)为逻辑1;低电平(-10V)为逻辑0;0电平(0V)发送自身时钟脉冲,字与字之间以一定间隔(不少于4位)分开,以此间隔作为字同步。一个32位的数据字由五部分组成:标志位(LABEL),用于标识传输数

3、据的信息类型;源/目的标识码(S/D),用于判断在一个多系统中的源系统;数据区(DATA);符号/状态位(SSM),用于标识数据字的特征或数据发生器的状态;奇偶校验位(PARITY),ARINC429数字信息传输使用奇校验。  3FPGA内部逻辑设计  根据ARINC429总线协议,要完成数据的收发以及对USB总线接口的逻辑控制,FPGA芯片应完成的逻辑功能框图如图1所示,其中虚线框中是FPGA实现的部分。    3.1发送器  发送器结构如图2所示,由缓冲存储器、信号发生器和发送控制逻辑三部分构成,用于将来自总线接口通信模块的32位429格式数据转换成调制前的两路串行数据,

4、即图2中TTL0和TTL1。其中使用缓存是为了提高数据传输速度,用户向缓存写进想要发送的多个32位数据字后,就可以通过entx信号控制数据从缓存连续不断地读出,并经过信号发生器转换成串行数据后送给总线驱动电路。在这里,缓存是直接调用ALTERA提供的LPM_FIFO+宏功能模块来实现的。    信号发生器由位计数器、字间隔计数器、码元调制、移位寄存器以及相应的控制逻辑组成,结构如图3所示。其中,位数计数器用来控制429数字字的位数,字间隔计数器用于产生字间隔。在本设计中,采用状态机来实现信号发生器的功能,共分3个状态:    a)IDLE:初始状态,当复位或是发送完一个32位

5、数后进入该状态,在该状态完成字间隔的产生,并用移位寄存器的load信号来锁存待转换数据,并在至少四位字间隔后进入TRANS状态,否则等到直到有新数据载入。  b)TRANS:进行数据的并串转换,同时进行奇偶校验,即每产生一位串行数据就进行一次异或运算,并由位数计数器控制计到31时就进入PARITY状态。  c)PARITY:输出奇偶校验位并回到IDLE状态。码元调制是在信号busy的有效区间内,将串行输出数据serial_data与时钟做逻辑运算得到的TTL0和TTL1(如图4)送至外部调制电路,并转换为429总线规范要求的双极性归零信号。其verilog语言描述如下:   

6、 always@(busy,clk_tx,serial_data)  begin  if(busy)  begin  TTL1《=serial_data&clk_tx;  TTL0《=~serial_data&clk_tx;  end  elsebegin  TTL1《=0;  TTL0《=0;  end  end  endmodule  发送控制逻辑用于协调缓存和信号发生器之间的数据传递。在缓存非空、busy无效(信号发生器状态机处于TRANS状态下busy有效)的条件下,一旦允许转换信号entx有效,便开启缓存的读使能rden,并产生转换数据的装载信号load,以完成缓存

7、数据的自动转换和发送3.2接收器  双极性的ARINC429信号通过解调电路转换为两路TTL信号,TTL1和TTL0。后经接收器转换成32位并行数据供主机读取。接收器结构如图5所示。为使数据接收具有一定的抗干扰能力,本设计采用一个16倍于码速率的高速时钟对数据进行检测。同步字头检测模块对高速时钟进行计数,当计数值计满64(对应4位字间隔),即产生一个位接收允许信号rec_en,该信号启动位检测模块。位检测模块对TTL0和TTL1信号进行监控,一旦两路串行数据中任一路为高,则标志有效数据开始发送。位检测模

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。