成骨诱导后骨髓间充质干细胞与a

成骨诱导后骨髓间充质干细胞与a

ID:22798835

大小:61.00 KB

页数:10页

时间:2018-10-31

上传者:U-991
成骨诱导后骨髓间充质干细胞与a_第1页
成骨诱导后骨髓间充质干细胞与a_第2页
成骨诱导后骨髓间充质干细胞与a_第3页
成骨诱导后骨髓间充质干细胞与a_第4页
成骨诱导后骨髓间充质干细胞与a_第5页
资源描述:

《成骨诱导后骨髓间充质干细胞与a》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

  成骨诱导后骨髓间充质干细胞与A:王岩松,刘丹平,周大利,梅晰凡【摘要】  目的研究多孔磁性硅灰石/磷灰石玻璃陶瓷载体A-GC支架(apatite-agicglassceramic,A-GC)作为组织工程骨支架的可行性。方法体外培养兔骨髓间充质干细胞,在成骨诱导剂地塞米松等的诱导下,向成骨细胞转化,并使之与修饰后A-GC支架复合,通过倒置相差显微镜和扫描电子显微镜观察细胞贴附情况。结果地塞米松等诱导组细胞形态向类成骨细胞转化,碱性磷酸酶表达明显增高,并表达Ⅰ型胶原。A-GC支架具有合适的微孔结构,材料大孔孔径为300~400μm,且孔道相互贯通,体外复合培养10小时,成骨细胞即开始贴附于支架上,复合培养7天,成骨细胞在支架上分化增殖,分泌细胞外基质。结论适当浓度成骨诱导剂可成功的将兔BMSCS成骨细胞诱导,修饰后A-GC支架是骨组织工程的良好载体。【关键词】骨髓间充干质细胞成骨诱导A-GC载体生物相容性  Abstract:ObjectiveToinvestigatethefeasibilityofapatite-agicglassceramic(A-GC)asscaffoldmaterialinbonetissue engineering.MethodsThepurifiedbonemarroalcellsrabbitethasone,β-glycerophophateandVitaminCandco-culturedodifiedA-GCinvitro.Thecell-meterialplexicroscopeandelectronicscanningmicroscopeinordertoevaluatetheinteractionbetoftheinducedcellsbyDexamethasoneacroporousstructure:thesizeofmacroporesindiameter,andporesinterconnectedeachother.Tenhoursafterco-culture,theosteoblastsadheredtoA-GCscaffolds.Sevendayslater,theosteoblastsdifferentiatedandproliferatedinA-GCatrixongosteoblasts.ConclusionsRabbitbonemarroalcellscanbeinducedintomarroalosteoblastsbysuitablecontentsofdexamethasone.ModifiedA-GCisagoodscaffoldmaterialforthebonetissueengineering.  Keyarroalcells;osteoblastsinduction;apatite-agicglassceramic;biopatibility  骨缺损修复一直是骨科临床的棘手问题,目前常用的修复方法均存在一定的缺点,难以满足临床需要。组织工程骨再造被认为是最有前景的骨缺损治疗 修复方法。在一定诱导条件下,可使BMSCs向成骨细胞分化的数目大大增加[1,2],表明其具有很强的成骨潜能,是应用最为广泛的种子细胞。细胞与支架材料的相互作用是组织工程研究的主要领域,细胞与材料的粘附是基础,细胞必须与材料发生适当的粘附才能进行迁移、分化和增殖。    单一的材料难以满足骨组织工程细胞外支架材料的要求,只有通过合适的方法将几种材料组合,在性能上互相取长补短,形成复合支架材料[3]。ASCS接近90%时,以0.25%胰蛋白酶消化,离心,弃上清,制成细胞悬液,细胞计数,按1×105/瓶接种,每日在倒置相差显微镜下观察。  1.2.2兔BMSCs的成骨诱导及鉴定:细胞传至第3代后,进行成骨诱导,实验分诱导组和非诱导组,诱导液为10-8mol/L地塞米松,10mmol/Lβ-甘油磷酸钠和50mg/L维生素C,倒置相差显微镜下观察细胞形态变化,分别在适当的时间测定碱性磷酸酶含量、Ⅰ型胶原的表达情况、Vonkossa染色。  碱性磷酸酶含量测量0.25%胰蛋白酶消化细胞后,细胞计数,以2000个/孔的密度接种于5块96孔培养板上。实验分2组:诱导组和非诱导组;每组10孔,每3天换液,于第4、6、8、10、12天分别取出1 块培养板,经0.5%TritonX-100处理后,4℃冰箱过夜,用酶标分析仪测碱性磷酸酶含量。  Ⅰ型胶原的表达检测0.25%胰蛋白酶消化细胞后,细胞计数,以1×104个/孔的密度接种于24孔培养板。培养板内置预先经多聚赖氨酸防脱片处理的盖玻片,每3天换液。实验分组同前,于第15天应用原位杂交技术检测各组Ⅰ型胶原的表达情况。  钙结节Vonkossa染色诱导15天后取出细胞爬片,PBS清洗3次,2%AgNO3水溶液浸染,紫外线下处理30分钟,蒸馏水洗1分钟,5%硫代硫酸钠水溶液处理2分钟后自来水洗5分钟。  1.2.3A-GC支架材料的生物学特性:本实验所用A-GC支架材料由由四川大学周大利教授提供。该材料采用溶胶-凝胶工艺[4,5]制备,并通过造孔、成型及热处理等步骤。A-GC支架材料为白色块状多孔物质,孔隙率40%~50%,孔径300~400μm,孔道相互贯通。  1.2.4A-GC支架材料修饰及体外实验设计:将A-GC载体环氧乙烷消毒,扫描电镜观察。将载体分别置于24孔培养板中。先后应用无水酒精处理48小时,三蒸水处理36小时,12小时换水1 次。使材料充分湿化。每孔分别加入多聚赖氨酸将材料充分浸泡2小时,吸除多余液体,细胞培养箱内干燥,将传了3代的成骨诱导的BMSCs制成浓度为4×106个/mL细胞悬液,接种到装有载体的24孔培养板中,移入CO2细胞箱培养4小时后,在支架周围小心加入培养液,进行培养。分别于培养第3天和第10天取出24孔板内的载体,PBS洗3次后,2.5%戊二醛固定,10%~100%的乙醇梯度脱水,扫描电镜观察。  1.2.5统计学分析:采用版本SPSS10.0统计软件进行处理分析,实验数据用±s表示,组间比较均采用重复测量的方差分析。  2.2兔BMSCs成骨诱导后形态观察诱导后细胞自第3天可见部分细胞由长梭形逐渐变成长方形,并逐渐变为多角形,体积较诱导前增大,多角形细胞比例随着培养时间的延长而逐渐增高,见图1。  2.3兔BMSCs的成骨诱导鉴定  2.3.1各组碱性磷酸酶活性检测结果:非诱导组碱性磷酸酶有基础表达,但表达量低,随时间略有增加;地塞米松等诱导组第4天时碱性磷酸酶表达与非诱导组无明显差别,随后碱性磷酸酶表达开始随时间的延长而逐渐升高,P<0.05,具有显著性差异。  表1 成骨诱导组兔骨髓间充质细胞与非诱导组在不同时间点的碱性磷酸酶比较(略)  *成骨诱导组与未诱导组比较,P<0.05,具有显著性差异  2.3.2各组原位杂交技术检测Ⅰ型胶原结果:成骨诱导组检测Ⅰ型胶原结果发现胞浆内可见大量棕黄色颗粒,见图2。非诱导组结果为阴性。  2.3.3钙结节Vonkossa染色结果:成骨诱导组Vonkossa染色可见钙盐沉积区域呈黑色钙结节,见图3。非诱导组结果为阴性。  2.3.4未复合细胞A-GC载体的结构观察:未复合细胞载体在扫描电镜下观察,放大倍数为500倍时,可见材料呈孔隙均匀分布的网架结构,孔隙表面光滑,孔隙率为40%~50%,见图4。  2.3.5细胞与修饰后A-GC支架复合的形态观察:复合兔骨髓间充质细胞后,扫描电镜下观察细胞在载体表面生长情况(第10天),放大倍数为500倍。可见椭圆形的、多角形及不规则形的骨髓间充质细胞贴附于复合材料孔隙之间,见图5。  3讨论   运用组织工程的方法修复组织缺损是近年来研究的热点,其中种子细胞的体外培养是研究的重点之一。骨组织工程研究要求有大量的稳定的种子细胞,自体或异体的成骨细胞往往取材困难,有限,骨髓间充质细胞具有多相分化潜能,且分化是非定向的,但己经分化的间充质干细胞仍具有转化成其它类型间充质细胞的潜能[6,7],因而,在一定诱导条件下,可使其向成骨细胞分化的数目增加,表明BMSCS具有很强的成骨潜能骨髓间充质细胞。向成骨细胞诱导的条件已经非常成熟,在培养基中加入地塞米松、β-甘油磷酸钠、维生素C就可以使之向成骨细胞分化[8]。已有研究将BMSCs种植于可释放地塞米松和维生素C的支架,并植入裸鼠体内,在体内形成矿化的骨组织[9]。  本实验中观察到地塞米松等诱导组细胞形态向类成骨细胞转化,自诱导第3天可见部分细胞由长梭形逐渐变成长方形,并逐渐变为多角形,细胞饱满,多角形细胞比例高,部分区域细胞呈现漩涡状分布。第4天时碱性磷酸酶表达与非诱导组无明显差别,随后碱性磷酸酶表达开始随时间的延长而逐渐升高,与非诱导组相比较有统计学意义。原位杂交检测Ⅰ型胶原结果发现胞浆内可见大量棕黄色颗粒。Vonkossa染色可见钙盐沉积区域呈黑色,对照组为阴性反应。   作为多孔型骨修复材料,孔径、孔隙率及内部连通性是骨长入方式和数量的决定因素。研究认为[5]49:孔隙率超过30%以后,孔隙之间能够相互贯通,孔隙率越高越利于新骨长入,但孔隙率越高,多孔材料的强度显著降低。本实验采用的A-GC支架孔隙率在40%~50%,既使孔隙相贯通,又满足了临床应用对力学性能的要求。此外,材料孔隙大小应满足骨单位和骨细胞生长所需空间。一般情况下,孔尺寸在200~400μm时最有利于新骨生长。A-GC支架中2~3μm的微观孔隙与300~400μm的宏观孔隙相结合,孔道联结贯通,孔隙结构适度,符合作为构建组织工程骨细胞支架材料的基本要求。  成骨诱导细胞与修饰后A-GC支架复合可见材料呈孔隙均匀分布的网架结构,孔隙表面光滑,孔隙率为40%~50%。椭圆形的、多角形及不规则形的BMSCs贴附于复合材料孔隙之间,细胞充分伸展,向四周伸出伪足,分泌的细胞外间充质包绕于细胞周围。本实验应用的A-GC生物活性玻璃陶瓷多孔支架材料是一种新型的生物复合载体,具有良好的生物活性、合适的力学性能和孔结构,实验中证实细胞在其上贴附生长良好,是优良的骨组织工程支架材料。   以后,我们将在此研究的基础上,把成骨诱导的细胞与A-GC支架复合植入动物骨缺损模型,观察A-GC支架体内降解性能及成骨情况,为生产可用于临床的组织工程化活性骨奠定基础。【参考文献】  [1]KadiyalaS,YoungRG,ThiedeMA,BruderSP.Cultureexpandedcaninemesenchymalstemcellspossessosteochondrogenicpotentialinvivoandinvitro[J].CellTransplant,1997,6(2):125-134.  [2]KishimotoKN,aterSci,2002,25(5):419.  [6]ParkSR,OreffoRO,TriffittJT.Interconversionpotentialofclonedhumanmarroesenchymalstemcells:pro-boneandanti-fat[J].JBoneMinerRes,2004,19(5):830-840.  [8]Jaisanmesenchymalstemcellsinvitro[J].JCellBiochem,1997,64(2):295-312.  [9]KimH,SuhH,JoSA,etal.Invivobone formationbyhumanmarroalcellsinbiodegradablescaffoldsthatreleasedexamethasoneandascorbate-2-phosphate[J].BiochemBiophysResmun,2005,332(4):1053-1060.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
大家都在看
近期热门
关闭