《敏感陶瓷》PPT课件

《敏感陶瓷》PPT课件

ID:38895412

大小:1.08 MB

页数:120页

时间:2019-06-21

上传者:U-145848
《敏感陶瓷》PPT课件_第1页
《敏感陶瓷》PPT课件_第2页
《敏感陶瓷》PPT课件_第3页
《敏感陶瓷》PPT课件_第4页
《敏感陶瓷》PPT课件_第5页
资源描述:

《《敏感陶瓷》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

敏感陶瓷随着科学技术的发展,在工业生产领域、科学研究领域和人们的日常生活中,需要检测、控制的对象(信息)迅速增加。 信息的获取有赖于传感器,或称敏感元件。在各种类型的敏感元件中,陶瓷敏感元件占有十分重要的地位。敏感陶瓷在某些传感器中,是关键材料之一,用于制造敏感元件。 敏感陶瓷用于制造敏感元件,是根据某些陶瓷的电阻率、电动势等物理量对热、湿、光、电压及某种气体、某种离子的变化特别敏感的特性而制得的。按其相应的特性,可把这些材料分别称作热敏、湿敏、光敏、压敏、气敏及离子敏感陶瓷。 此外,还有具有压电效应的压力、位置、速度、声波等敏感陶瓷,具有铁氧体性质的磁敏陶瓷及具有多种敏感特性的多功能敏感陶瓷等。这些敏感陶瓷已广泛应用于工业检测、控制仪器、交通运输系统、汽车、机器人、防止公害、防灾、公安及家用电器等领域。 1、敏感陶瓷分类①物理敏感陶瓷:光敏陶瓷,如CdS、CdSe等;热敏陶瓷,如PTC陶瓷、NTC和CTR热敏陶瓷等;磁敏陶瓷,如InSb、InAs、GaAs等; 声敏陶瓷,如罗息盐、水晶、BaTiO3、PZT等;压敏陶瓷,如ZnO、SiC等;力敏陶瓷,如PbTiO3、PZT等。 ②化学敏感陶瓷氧敏陶瓷,如SnO2、ZnO、ZrO2等;湿敏陶瓷,TiO2—MgCr2O4、ZnO-Li2O-V2O5等。生物敏感陶瓷也在积极开发之中。 2.敏感陶瓷的结构与性能陶瓷是由晶粒、晶界、气孔组成的多相系统,通过人为的掺杂,可以造成晶粒表面的组分偏离,在晶粒表层产生固溶、偏析及晶格缺陷等。 另外,在晶界处也会产生异质相的析出、杂质的聚集、晶格缺陷及晶格各向异性等。这些晶粒边界层的组成、结构变化,显著改变了晶界的电性能,从而导致整个陶瓷电学性能的显著变化。 热敏陶瓷thermistorceramics热敏陶瓷是指对温度变化敏感的陶瓷材料。热敏陶瓷热敏电容热敏电阻热释电材料正温度系数热敏电阻(BaTiO3半导体瓷)负温度系数热敏电阻(MnCoNi半导体瓷)热敏电阻是一种电阻值随温度变化的电阻元件。电阻值随温度升高而增加的称为正温度系数(PTC)热敏电阻电阻值随温度升高而减小的称为负温度系数(NTC)热敏电阻 热敏半导体陶瓷材料就是利用它的电阻、磁性、介电性等性质随温度而变化,用它作成的器件可作为温度的测定、线路温度补偿及稳频等,且具有灵敏度高、稳定性好、制造工艺简单及价格便宜等特点。按照热敏陶瓷的电阻-温度特性,一般可分为三大类:1电阻随温度升高而增大的热敏电阻称为正温度系数热敏电阻,简称PTC热敏电阻;2电阻随温度的升高而减少的热敏电阻称为负温度系数热敏电阻,简称NTC热敏电阻;3电阻在某特定温度范围内急剧变化的热敏电阻,简称为CTR临界温度热敏电阻。 基本特性1、标准阻值(R)热敏电阻器在规定温度下(25℃),采用引起电阻值不超过0.1%的功率测得的电阻值,称为标准阻值。2、材料常数(B)表征热敏电阻材料物理特性的常数,与标准阻值的关系如下式:PTC热敏电阻NTC热敏电阻AP、AN为与形状尺寸相关的常数 3、耗散系数(δ)表示热敏电阻温度升高1℃所消耗的功率,描述了热敏电阻工作时与外界环境进行热交换的大小。其中:W热敏电阻消耗的功率(mW)T热敏电阻的温度T0环境温度I在温度T时通过热敏电阻的电流(mA)R在温度T时热敏电阻的电阻值(Ω) 4、时间常数(τ)热敏电阻在零功率状态下,当环境温度由一个特定温度向另一个特定温度突变时,热敏电阻阻值变化63.2%所需时间。起始温度:25℃~85℃或0℃~100℃5、温度系数(αT)当温度变化1℃时,热敏电阻阻值的变化率。αT和RT对应于温度T(K)时的电阻温度系数和电阻值,在工作温度范围内,αT不是一个常数。 一、PTC热敏陶瓷1、PTC热敏电阻的基本特性(1)电阻—温度特性其电阻—温度曲线(R-T曲线)。居里温度Tc可通过掺杂来调整。(2)电阻温度系数α是指零功率电阻值的温度系数,其定义为:αT=1/RT*dRT/dT对于PTC,αT=2.303/(T2-T1)*lgR2/R1 PTC热敏电阻PTC是PositiveTemperaturecoefficient(正温度系数)的缩写,是一种以钛酸钡(BaTiO3)为主要成分的半导体功能陶瓷材料,具有电阻值随着温度升高而增大的特性,特别是在居里温度点附近电阻值跃升有3~7个数量级。利用其最基本的电阻温度特性及电压-电流特性与电流-时间特性,PTC系列热敏电阻已广泛应用于工业电子设备,汽车及家用电器等产品中,以达到自动消磁、过热过流保护,马达启动,恒温加热,温度补偿、延时等作用。 (3)室温电阻率是指25℃时的零功率电阻率ρa。(4)电压-电流特性(5)耐压特性是指PTC热敏电阻陶瓷所承受的最高电压Vmax。(6)电流-时间特性(7)放热特性 二、PTC热敏陶瓷材料PTC热敏电阻器有两大系列:一类是采用BaTiO3为基材料制作的PTC;另一类是以氧化钒为基的材料。1、BaTiO3系PTC热敏电阻陶瓷(1)BaTiO3陶瓷产生PTC效应的条件当BaTiO3陶瓷材料中的晶粒充分半导化,而晶界具有适当绝缘性时,才具有PTC效应。PTC效应完全是由其晶粒和晶界的电性能决定,没有晶界的单晶不具有PTC效应。 (2)陶瓷的半导化由于在常温下是绝缘体,要使它们变成半导体,需要一个半导化。所谓半导化,是指在禁带中形成附加能级:施主能级或受主能级。在室温下,就可以受到热激发产生导电载流子,从而形成半导体。形成附加能级的方法:通过化学计量比偏离和掺杂。A、化学计量比偏离在氧化物半导体陶瓷的制备过程中,通过控制烧结温度、烧结气氛以及冷却气氛等,产生化学计量的偏离。 B、掺杂在氧化物中,掺入少量高价或低价杂质离子,引起氧化物晶体的能带畸变,分别形成施主能级和受主能级。从而形成n型或p型半导体陶瓷。(3)BaTiO3陶瓷的半导化一般采用掺杂施主金属离子。在高纯BaTiO3陶瓷中,用La3+、Ce4+、Sm3+、Dy3+、Y3+、Sb3+、Bi3+等置换Ba2+。或用Nb5+、Ta5+、W6+等置换Ti4+。掺杂量一般在0.2%~0.3%之间,稍高或稍低均可能导致重新绝缘化。 纯BaTiO3具有较宽的禁带,常温下电子激发很少,其室温下的电阻率为1012cm,已接近绝缘体,不具有PTC电阻特性。 BaTiO3的化学计量比偏离半导化采用在真空、惰性气体或还原性气体中加热BaTiO3。由于失氧,BaTiO3内产生氧缺位,为了保持电中性,部分Ti4+将俘获电子成为Ti3+。在强制还原以后,需要在氧化气氛下重新热处理,才能得到较好的PTC特性,电阻率为1--103cm。 采用掺杂使BaTiO3半导化的方法之一是施主掺杂法,该法也称原子价控制法。如果用离子半径与Ba2+相近的三价离子(如La3+、Ce3+、Nd3+、Ga3+、Sm3+、Dy3+、Y3+、Bi3+、Sb3+等)置换Ba2+,或者用离子半径与Ti4+相近的五价离子(如Ta5+、Nb5+、Sb5+等)置换Ti4+,采用普通陶瓷工艺,即能获得电阻率为103--105cm的n型BaTiO3半导体。 五价离子掺杂浓度对BaTiO3的电阻率影响很大。一般情况下,电阻率随掺杂浓度的增加而降低,达到某一浓度时,电阻率降至最低值,继续增加浓度,电阻率则迅速提高,甚至变成绝缘体。 BaTiO3的电阻率降至最低点的掺杂浓度(质量分数)为:Nd0.05%,Ce、La、Nb0.2%~0.3%,Y0.35% 采用掺杂使BaTiO3半导化的方法之二是AST掺杂法,以SiO2或AST(1/3A12O3·3/4SiO2·1/4TiO2)对BaTiO3进行掺杂,AST加入量3%(摩尔分数)于1260--1380℃烧成后,电阻率为40--100cm。 (4)BaTiO3PTC陶瓷的生产工艺以居里点Tc为100℃的PTCBaTiO3陶瓷为例。(1-y)(Ba1-xCaxTi1.01O3).ySrSnO3+0.002La2O3+0.006Sb2O3+0.0004MnO2+0.0025SiO2+0.00167Al2O3+0.001Li2CO3A、原料:一般应采用高纯度的原料,特别要控制受主杂质的含量,把Fe、Mg等杂质含量控制在最低限度。一般控制在0.01mol%以下。B、掺杂:施主掺杂物La2O3、Nb2O5、Y2O3等宜在合成时引入,含量在0.2~0.3mol%这样一个狭窄的范围内。C、瓷料制备及成型:传统的工艺难以解决纯度和均匀性的问题,现已经开始采用液相法。D、烧成:PTC陶瓷必须在空气或氧气氛中烧成。 (5)影响PTC热敏陶瓷性能的因素A、组成对居里温度的影响不同的PTC热敏陶瓷对Tc(开关温度)有不同的要求。通过控制BaTiO3的居里点可以解决。改变Tc称“移峰”,通过改变组成,即加入某些化合物可以达到“移峰”的目的,这些加入的化合物称为“移峰剂”。“移峰剂”具有与Ba2+、Ti4+离子大小、价态相似的金属离子,可以取代Ba2+、Ti4+离子,形成连续固溶体。如PbTiO3(高于120℃,Tc=490℃)、SrTiO3(低于120℃,Tc=-150℃)。 B、晶粒大小的影响晶粒大小与正温度系数、电压系数及耐压值有密切的关系。一般说来,晶粒越细小,晶界的比重越大,外加电压分配到每个晶粒界面层的电压就越小。因此,晶粒细小可降低电压系数,提高耐压值。BaTiO3热敏陶瓷的PTC特性的高低,与陶瓷的晶粒大小密切相关。研究表明,晶粒在5um左右的细晶陶瓷具有极高的正温度系数。要获得细晶陶瓷,首先要求原料细、纯、匀、来源稳定,其次可通过添加一些晶粒生长抑制剂,达到均匀细小净粒结构的目的。此外,加入玻璃形成剂和控制升温速度也可以抑制晶粒长大。 C、化学计算比(Ba/Ti)的影响在TiO2稍微过量时通常会呈现最低体积电阻率;在Ba过量时体积电阻率往往会增高,且使瓷料易于实现细晶化。D、Al2O3对PTC陶瓷的影响Al3+在BaTiO3基陶瓷中有三种存在位置:①当TiO2高度过量时,Al3+有可能被挤到BaTiO3晶格的Ba2+位置,这时Al3+的作用是施主;②在Al2O3-SiO2-TiO2掺杂的PTC瓷料中,Al3+处于玻璃相中,能够起到吸收受主杂质、纯化主晶相的作用;③在未引入SiO2、且TiO2也不过量的情况下,Al3+将取代BaTiO3晶格中的Ti4+,起受主作用。显然,①、②种情况下对PTC瓷料的半导化起有益作用。③是有害的。 三、PTC热敏电阻的应用为温度敏感特性的应用、延迟特性的应用及加热器方面的应用。1、温度监控传感器2、彩色电视机消磁3、电冰箱起动器 PTC热敏电阻可用于计算机及其外部设备、移动电话、电池组、远程通讯和网络装备、变压器、工业控制设备、汽车及其它电子产品中,作为开关类的PTC陶瓷元件,具有开关功能。使电器设备避免过流、过热损坏;作为加热类的PTC陶瓷元件,它是一种温度自控的发热体,大量用于暖风机、电吹风、电蚊香、电熨斗等需要保持恒定温度的电器上,可省去一套温控线路。 (1)负载过电流、过热保护热敏电阻动作后,电路中电流有了大幅度的降低,因而可同时起到过热保护和过流保护两种作用。热敏电阻也适用于手提电脑及手机中的锂离子电池和镍氢电池的短路及发热保护。当手机电池过充电或短路时,电池发热,电池内部线路板上的PTC阻值上升,将电流限制在安全范围内。某些水货手机电池内部用普通电阻代替PTCR,在发生短路故障时,保护作用很差。 PTCR在电视机PTC消磁电路中的应用彩色显像管的栅网、、荫罩等部件都是用金属材料做成的,易受到地磁场或机内、外杂散磁场的影响,会使这些金属部件磁化,使图像色彩出现异常,因此彩色电视机都设有自动消磁电路。附着在显像管上的消磁线圈与PTCR串联组成消磁电路。 刚开机时,PTCR冷电阻很小(约为12~18Ω),流过消磁线圈的50Hz电流很大,产生很强的交变磁场,电流同时也流过PTCR,使其温度上升,其阻值在几秒内迅速增大,电流逐渐减小,呈衰减波形,磁场逐渐减弱起到消磁的作用。为了减小维持电流,可紧贴PTCR旁边,设置一个小功率加热电阻,使PTCR在电视机工作期间一直保持较高的温度,流过消磁线圈的电流可维持在很小的水平,以减小耗电。 电机启动PTC热敏电阻电机在启动时,要克服本身的惯性,同时还要克服负载的反作用力(如冰箱压缩机启动时必须克服制冷剂的反作用力),因此电机启动时需要较大的电流和转矩。当转动正常后,为了节约能源,需要的转矩又要大幅度下降。给电机加一组辅助线圈,只在启动时工作,正常后它就断开。将PTC热敏电阻串联在启动辅助线圈,启动后PTC热敏电阻进入高阻态切断辅助线圈,正好可以达到这种效果。 灯丝预热用PTC热敏电阻器用于各种荧光灯电子镇流器、电子节能灯中,不必改动线路,将适当的热敏电阻器直接中跨接在灯管的谐振电容器两端,可以变电子镇流器、电子节能灯的硬启动为预热启动,使灯丝的预热时间达0.4~2秒可延长灯管寿命三倍以上。刚接通开关时,Rt处于常温态,其阻值远远低于C2阻值,电流通过C1,Rt自热温度超过居里点温度Tc跃入高阻态,其阻值远远高于C2阻值,电流通过C1、C2形成回路导致LC谐振,产生高压点亮灯管。 四、NTC热敏电阻陶瓷NTC热敏电阻陶瓷是指随温度升高而其电阻率按指数关系减小的一类陶瓷。RT=R0exp(B/T-B/T0)B=lgRT-lgR0/(1/T-1/T0)RT、R0为温度T、T0时热敏电阻的电阻值(Ω),B热敏电阻常数(K)。热敏电阻常数B可以表征和比较陶瓷材料的温度特性,B值越大,热敏电阻的电阻对于温度的变化率越大。一般常用的热敏电阻陶瓷的B=2000~6000K,高温型热敏电阻陶瓷的B值约为10000~15000K。 NTC热敏电阻NTC是NegativeTemperaturecoefficient(负温度系数)的缩写,是以尖晶石结构为主的半导体功能陶瓷,具有电阻值随着温度升高而减小的特性,按照使用温度可分为低温(-130~0℃)、常温(-50~350℃)及高温(>300℃)用三种类型,主要应用于温度测量和温度补偿。NTC热敏电阻通常都是以Mn3O4为主材料,同时引入CoO、NiO、CuO、Fe2O3等,使其在高温下形成尖晶石结构的半导体材料,主要有二元、三元及四元系材料。 NTC热敏电阻陶瓷大多数是尖晶石结构或其它结构的氧化物陶瓷,主要成分是CoO、NiO、MnO、CuO、ZnO、MgO、Fe2O3、Cr2O3、ZrO2、TiO2等。分为三大类:低温型、中温型及高温型陶瓷。 NTC热敏电阻材料绝大多数是具有尖晶石型结构的过渡金属固熔体。其中,二元系主要有:Cu-Mn、Co-Mn、Ni-Mn等系。 其中,最有实用意义的为Co-Mn系材料。它在20℃时的电阻率为103cm,主晶相为立方尖晶石MnCo2O4。随着Mn含量的增大,则形成MnCo2O4立方尖晶和MnCo2O4四方尖晶的固溶体,电阻率逐渐增大。 三元系有:Mn-Co-Ni、Mn-Cu-Ni、Mn-Cu-Co等Mn系和Cu-Fe-Ni、Cu-Fe-Co等非Mn系。在含Mn的三元系中,随着Mn含量的增大,电阻率增大。此外,还有Cu-Fe-Ni,CO四元系等。 二元系NTC热敏电阻材料常用的二元系NTC热敏电阻材料有:MnO-CoO-O2,MnO-CuO-O2,MnO-NiO-O2、CoO-CuO-O2,CoO-NiO-O2,CuO-NiO-O2系等。缺点:对组分敏感,组分稍有变化,电导率就可能变化几个数量级,使产品一致性和重复性差。 常用的三元系材料:MnO-CoO-NiO-O2MnO-CuO-NiO-O2MnO-CuO-CoO-O2三元系NTC热敏电阻材料在三元系浓度三角形中央区域内,材料的电导率对阳离子成分不敏感,组分稍有变化,电导率变化很小,可以生产出一致性、重复性、稳定性优良的NTC热敏电阻。 四元系NTC热敏电阻材料常用的含锰四元系NTC热敏电阻材料有:MnO-CoO-NiO-FeO-O2MnO-CoO-NiO-CuO-O2MnO-NiO-FeO-CuO-O2MnO-CoO-FeO-CuO-O2 工作温度在300℃以上的热敏电阻(NTC)常称为高温热敏电阻。高温热敏电阻有广泛的应用前景,尤其在汽车空气/燃料比传感器方面,有很大的实用价值。 其中,主要使用的两种较典型材料为:(1)稀土氧化物材料Pr、Er、Tb、Nd、Sm等氧化物,加入适量其他过渡金属氧化物,在1600~1700℃烧结后,可在300--1500℃工作。 (2)MgAl2O4--MgCr2O4--LaCrO3[或(LaSr)CrO3]三元系材料该系材料适用于1000℃以下温区。 工作温度在-60℃以下的热敏电阻材料(NTC)称为低温热敏电阻材料。低温热敏电阻材料以过渡金属氧化物为主,加入La、Nd、Pd等的氧化物。主要材料有Mn-Ni-Fe-Cu、Mn-Cu-Co、Mn-Ni-Cu等。 2)NTC热敏电阻陶瓷的导电机理:(1)化学计量比偏离采用氧化或还原气氛烧结,分别产生p型和n型半导体,形成电子或空穴导电。(2)掺杂在主成分中引入少量与主成分金属离子种类不同、电价不等的金属离子,产生不等价置换,从而产生产生p型和n型半导体,实现电子或空穴导电。 2.高温NTC热敏电阻陶瓷一般要求为:熔点高、性能稳定、热敏感性高、电阻温度系数大、元件烧成后,与电极的接触状态好、可通过调整配方和晶粒度能够改变电阻的温度特性。材料体系有以下两类:ZrO2-CaO、ZrO2-Y2O3等萤石型结构陶瓷以Al2O3、MgO为主要成分的尖晶石型陶瓷 3.NTC热敏电阻陶瓷的应用1)温度补偿:用于石英振荡器(2~3个NTC)2)抑制浪涌电流:用于控制开关电源、电机、变压器等在接通瞬时产生的大电流。3)温度检测用于热水器、空调、厨房设备、办公用品、汽车电控等。 片式NTC热敏电阻主要应用在移动电话、手提电脑、液晶显示器、个人计算机、传真机以及汽车工业,其中44%用于通讯领域,26%用于汽车工业,30%用于消费类电器。近年来,由于移动通讯、计算机、消费类电子产品(如彩电、VCD、DVD、LD、CD等)、办公自动化设备、汽车电子装备以及军用无线电设备和航空、航天高新数字电子技术产品在我国的迅猛发展,国内市场对片式化NTC热敏电阻的需求与日俱增,市场前景大为看好。因此,国内外对片式NTC热敏电阻的需求以每年20~30%的速率递增。 ③CTR材料CTR热敏电阻主要是指以VO2为基本成分的半导体陶瓷,在68℃附近电阻值突变达到3--4个数量级,具有很大的负温度系数,因此称为巨变温度热敏电阻或临界(温度)热敏电阻材料。 这种巨变温度热敏电阻变化具有再现性和可逆性,故可作电气开关或温度探测器。这一特定温度称临界温度。电阻值的急剧变化,通常是随温度的升高,在临界温度附近,电阻值急剧减小。 V是易变价元素,它有5价、4价等多种价态,因此,V系有多种氧化物,如V2O5、VO2、V2O3、VO等。这些氧化物各有不同的临界温度。每种V系氧化物与B、Si、P、Mg、Ca、Sr、Ba、Pb、La、Ag等氧化物形成多元系化合物,可上、下移动其临界温度。 4.气敏陶瓷在现代社会,人们在生活和工作中使用和接触的气体越来越多,其中某些易燃、易爆、有毒气体及其混合物一旦泄露到大气中,会造成大气污染,甚至引起爆炸和火灾。 气敏陶瓷是一种对气体敏感的陶瓷材料,陶瓷气敏元件(或称陶瓷气敏传感器)由于其具有灵敏度高、性能稳定、结构简单、体积小、价格低廉、使用方便等优点,得到迅速发展。 ⑴气敏陶瓷的分类及结构气敏陶瓷大致可分为半导体式、固体电解质式及接触燃烧式三种: ①半导体式气敏陶瓷按照主要原料成分来分类,如SnO2型、ZnO型、-Fe2O3型、-Fe2O3型、钙钛矿化合物型、TiO2型等。 ②固体电解质是一类介于固体和液体之间的奇特固体材料,其主要特征是它的离子具有类似于液体电解质的快速迁移特性,如ZrO2氧敏陶瓷,K2SO4、Na2SO4等碱金属硫酸盐等。 ③接触燃烧式气敏陶瓷元件系用铂金丝作母线,表面用陶瓷涂层、触媒材料、防晶粒生长材料以及防触媒中毒材料等涂层所制成。 ⑵气敏陶瓷的性能半导体表面吸附气体分子时,半导体的电导率将随半导体类型和气体分子种类的不同而变化。 吸附气体一般分为物理吸附和化学吸附两大类。被吸附的气体一般也可分为两类。具有阴离子吸附性质的气体称为氧化性(或电子受容性)气体,如O2、NOx等。具有阳离子吸附性质的气体称为还原性(或电子供出性)气体,如H2、CO、乙醇等。 ⑶典型的气敏半导体陶瓷①SnO2系气敏陶瓷②ZnO系气敏陶瓷③Fe2O3系气敏陶瓷 ①SnO2系气敏陶瓷SnO2系气敏陶瓷是最常用的气敏半导体陶瓷,是以SnO2为基材,加入催化剂、黏结剂等,按照常规的陶瓷工艺方法制成的。 SnO2气敏陶瓷以超细SnO2粉料为基本原料,粉料越细,比表面积越大,对被测气体越敏感。 制造高分散的SnO2超细粉料的方法有锡酸盐分解法、金属锡燃烧法、等离子体反应法及化学共沉淀物热分解法等。 用SnCl4或SnCl2制备SnO2,这两种方法最后均需煅烧,其煅烧条件对于SnO2粉料的晶粒大小、比表面积大小影响很大。 二氧化锡气敏陶瓷所用添加剂多为半导体添加剂,它们有不同的作用,主要是Sb2O3、V2O5、MgO、PbO、CaO等。 SnO2系气敏陶瓷制造的气敏元件有如下特点:①灵敏度高,出现最高灵敏度的温度较低,约在300℃;②元件阻值变化与气体浓度成指数关系,在低浓度范围,这种变化十分明显,非常适用于对低浓度气体的检测; ③对气体的检测是可逆的,而且吸附、解吸时间短;④气体检测不需复杂设备,待测气体可通过气敏元件电阻值的变化直接转化为信号,且阻值变化大,可用简单电路实现自动测量; ⑤物理化学稳定性好,耐腐蚀,寿命长;⑥结构简单,成本低,可靠性高,耐振动和抗冲击性能好。 SnO2系气敏陶瓷的应用:利用SnO2烧结体吸附还原气体时电阻减少的特性来检测还原气体,已广泛应用于家用石油液化气的漏气报警、生产用探测报警器和自动排风扇等。 SnO2系气敏元件对酒精和CO特别敏感,广泛用于CO报警和工作环境的空气监测等。 已进入实用的SnO2系气敏元件对于可燃性气体,例如H2、CO、甲烷、丙烷、乙醇、酮或芳香族气体等,具有同样程度的灵敏度,因而SnO2气敏元件对不同气体的选择性就较差。 ②ZnO系气敏陶瓷氧化锌系气敏陶瓷元件最突出的优点是气体选择性强,一般加入适量的贵金属催化剂来提高陶瓷元件的灵敏度。 氧化锌气敏元件对异丁烷、丙烷、乙烷等碳氢化合物有较高灵敏度,碳氢化合物中碳元素数目越大灵敏度越高。 掺Pd的氧化锌气敏陶瓷元件对H2、CO灵敏度较高,对碳氢化合物灵敏度较差。掺Ag的氧化锌气敏陶瓷元件对乙醇、苯和煤气较灵敏,且成本也较低。 氧化锌气敏陶瓷元件的结构与二氧化锡的不同,可以把它做成双层,将半导体元件与催化物分离,这样可以更换催化剂来提高元件的气体选择性,其缺点是元件的使用工作温度较高。 ③Fe2O3系气敏陶瓷常见的铁的氧化物有三种基本形式:FeO、Fe2O3和Fe3O4; 其中,Fe2O3有两种陶瓷制品:-Fe2O3和-Fe2O3均被发现具有气敏特性。-Fe2O3具有刚玉型晶体结构。从热稳定性来看-Fe2O3较优,但从灵敏度而言则比-Fe2O3差。 Fe2O3系气敏陶瓷最大的特点是不用贵金属做催化剂也能得到较高的催化性,高温下热稳定性好。-Fe2O3对丙烷气体较灵敏,但对甲烷就不灵敏。 -Fe2O3的化学稳定性好,对甲烷乃至异丁烷都非常灵敏,对水蒸气和乙醇等却不灵敏。-Fe2O3作家庭用可燃气体报警器非常合适。因它对水蒸气和乙醇等不灵敏,故不会因水蒸气及酒精的存在而误报。 湿敏半导体陶瓷湿度,通常是指空气中水蒸气的含量。湿度与人类的日常生活和生产活动有着十分密切的关系,因此需要随时监测空气湿度。新型湿度传感器可将湿度的变化以电信号形式输出,易于实现远距离监测、记录和反馈的自动控制。 ⑴湿敏半导体陶瓷的分类以湿敏材料制造的湿敏元件配以适当的电路即成为湿度传感器。根据湿敏材料的性能及其使用功能可分为以下四类: ①无机盐系,如LiCl电解质型。②有机高分子系,有电解质型(离子交换树脂)、膨润型、电容型。③半导体陶瓷系,有电容型、电阻型、阻抗型。④半导体型,如半导体硅材料。其中,最常用的为半导体陶瓷系湿敏电阻型。 ⑵湿敏陶瓷制造工艺及其特性湿敏陶瓷材料种类繁多,化学组成复杂。按工艺过程可将湿敏半导体陶瓷分为瓷粉膜型、烧结型和厚膜型。 ①MgCr2O4-TiO2系湿敏陶瓷MgCr2O4-TiO2系湿敏陶瓷是典型的高温烧结型多孔湿敏陶瓷结构,气孔率高达30%--40%,具有良好的透湿性能。MgCr2O4-TiO2系湿敏陶瓷的制造工艺可采用传统陶瓷的制造方法,但原料必须采用化学纯或分析纯级。 MgCr2O4-TiO2系湿敏陶瓷的制造工艺流程如下:MgO、Cr2O3、TiO2→称量→球磨→干燥→造粒→干压烧结→切片→电极→引线→装配→测试 MgCr2O4-TiO2系多孔陶瓷具有很高的湿度活性,湿度响应快,对温度、时间、湿度和电负荷的稳定性高,是很有应用前途的湿敏传感器陶瓷材料,已用于微波炉的自动控制。程序控制的微波炉,根据处于微波炉蒸汽排口处的湿敏传感器的相对湿度反馈信息,调节烹调参数。 此外,目前比较常见的高温烧结型湿敏陶瓷还有ZnCr2O4为主晶相系半导体陶瓷,以及新研究的羟基磷灰石[Ca10(PO4)6(OH)2]湿敏陶瓷。 陶瓷湿度传感器结构 ②Si-Na2O-V2O5系湿敏陶瓷Si-Na2O-V2O5系湿敏陶瓷是典型的低温烧结型湿敏陶瓷,其主晶相是具有半导性的硅粉。烧结温度较低(一般低于900℃),烧结时固相反应不完全,烧结后收缩率很小。其阻值为102--107,随相对湿度以指数规律变化,测量范围为(25~100)%RH。 Si-Na-V系湿敏陶瓷的感湿机理是由于Na2O和V2O5吸附水分,使吸湿后硅粉粒间的电阻值显著降低。这种元件的优点是温度稳定性较好,可在100℃下工作,阻值范围可调,工作寿命长。缺点是响应速度慢,有明显湿滞现象,不能用于湿度变化不剧烈的场合。 ⑶湿敏半导体陶瓷的应用湿敏陶瓷的应用很广泛,主要应用于家电、汽车、医疗、工业设备、农、林、畜牧业等领域。 6.压敏半导体陶瓷一般电阻器的电阻值可以认为是一个恒定值,即流过它的电流与施加电压成线性关系。压敏陶瓷是指电阻值随着外加电压变化有一显著的非线性变化的半导体陶瓷,用这种材料制成的电阻称为压敏电阻器。 制造压敏陶瓷的材料有SiC、ZnO、BaTiO3、Fe2O3、SnO2、SrTiO3等。其中BaTiO3、Fe2O3利用的是电极与烧结体界面的非欧姆特性,而SiC、ZnO、SrTiO3利用的是晶界非欧姆特性。目前,应用最广、性能最好的是氧化锌压敏半导体陶瓷。 ⑴压敏陶瓷的基本特性压敏电阻陶瓷具有非线性伏--安特性,对电压变化非常敏感。在某一临界电压以下,压敏电阻陶瓷电阻值非常高,几乎没有电流;但当超过这一临界电压时,电阻将急剧变化,并且有电流通过。随着电压的少许增加,电流会很快增大。压敏电阻陶瓷的这种电流-电压特性曲线如图所示。 1.齐钠二极管;2.SiC压敏电阻;3.ZnO压敏电阻;4.线性电阻;5.ZnO压敏电阻。压敏电阻的I-U特性曲线 由图可见,压敏电阻陶瓷的I-U特性不是一条直线,其电阻值在一定电流范围内呈非线性变化。因此,压敏电阻又称非线性电阻,用这种陶瓷制造的器件叫非线性电阻器。 ⑵氧化锌压敏陶瓷ZnO系压敏电阻陶瓷是压敏电阻陶瓷中性能最优的一种材料。成分是ZnO,并添加Bi2O3、CoO、MnO、Cr2O3、Sb2O3、TiO2、SiO2、PbO等氧化物经改性烧结而成。 氧化锌压敏电阻的应用ZnO压敏电阻器的应用很广,可归结为如下两方面:①过压保护②稳定电压 ①过压保护各种大型整流设备、大型电磁铁、大型电机、通讯电路、民用设备在开关时,会引起很高的过电压,需要进行保护,以延长使用寿命。故在电路中接入压敏电阻可以抑制过电压。此外,压敏电阻还可作晶体管保护、变压器次级电路的半导体器件的保护以及大气过电压保护等。 ②稳定电压由于氧化锌压敏电阻具有优异的非线性和短的响应时间,且温度系数小、压敏电压的稳定度高,故在稳压方面得以应用。压敏电阻器可用于彩色电视接收机、卫星地面站彩色监视器及电子计算机末端数字显示装置中稳定显像管阳极高压,以提高图像质量等。 光敏半导体陶瓷光敏陶瓷也称光敏电阻瓷,属半导体陶瓷。由于材料的电特性不同以及光子能量的差异,它在光的照射下吸收光能,产生不同的光电效应:光电导效应和光生伏特效应。 利用光电导效应来制造光敏电阻,可用于各种自动控制系统;利用光生伏特效应则可制造光电池或称太阳能电池,为人类提供了新能源。 ⑴光电导效应当光线照射到半导体时,在光子作用下产生的光生载流子使电导增加的现象,称为光电导效应。 ⑵光生伏特效应当光线照射到半导体的p-n结上时,如果光子能量足够大,h≥Eg,就在p-n结附近激发出电子--空穴对。在自建电场的作用下,n区的光生空穴被拉向p区,p区的光生电子被拉向n区,结果n区积累了负电荷,p区积累了正电荷,产生光生电动势。若将外电路接通,就有电流由p区流经外电路至n区,这种效应称为光生伏特效应。 光电二极管、太阳能电池和光电晶体管就是利用光生伏特效应制成的光电转换元件。通常不同的材料具有不同的光敏光区,并在某一波长有最大的灵敏度。在可见光区(0.4~0.76m)最适用的光敏材料为CdS和CdSe;而在近红外区(0.76~3m)最适用的光敏材料为PbS。目前,常用于制造光敏电阻的光敏材料有CdS、CdSe和PbS。 (3)光敏电阻瓷的应用太阳能电池是利用光生伏特效应将太阳能转换为电能的器件。虽然能量h≥Eg的光子均可产生激发,但只有能量相当于Eg的部分才能转变为电能。光子吸收材料的禁带在Eg≈0.9eV附近时,光子激发利用率最高。 太阳能电池的转换率不仅受光子激发利用率的限制,还受其他因素的影响。一般太阳能电池目前的转换率大都在10%以下。 综合考虑影响转换效率的因素,光子吸收材料的禁带宽度在1.0~1.6eV较合适,因此,Si、Cu2S、GaAs、CdTe等均可用作太阳能电池材料。Cu2S、CdTe常用作陶瓷太阳能电池的光子吸收材料,制成Cu2S--CdS电池与CdTe--CdS电池。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭